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Units and dimension of physical quantities - significant figures. Data interpretation
and analysis, precision and accuracy, error analysis, propagation of errors, Least
square fitting. Measurement of fundamental constants - e, h, ¢ - Detection of X-rays,
gamma rays, Charged particles, neutrons. Ionization chamber - proportional counter
— Measurement of e/m ratio - Measurement of Hall voltage, mobility and charge
carrier concentration — measurement of resistance and capacitance in series and
parallel.
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1. UNITS

All the measurable quantities that are used to express the laws of physics are called Physical Quantities.
For example: Distance, Mass, Force etc. In our daily life, measuring and comparing the magnitude of
different quantities is quite essential. Measurement implies comparison of any unknown physical
quantity with a known fixed physical quantity. The known fixed physical quantity is known as unit. In
other words, unit is the quantity used as standard for measurement. For example, let the length of the
classroom be 10 metre. That means, the length of classroom is compared with the standard quantity of
length called metre.
i.e. Physical quantity = value unit
Ex. Length =10 m

C.G.S, F.P.S and M.K.S are the measurement systems that were used for the measurement of physical
quantities in earlier times.

C.G.S system: In this system, the unit of length is centimetre, the unit of mass is gram, and the unit of
time is second. The CGS system is built on smaller fundamental units, which makes it beneficial in
domains such as electromagnetism and optics. Unlike the MKS/SI system, many CGS-derived units
have distinct scaling factors, resulting in more difficult conversions. Although the MKS/SI system has
completely supplanted the CGS system in most scientific and technical applications, it is still utilized in
some fields such as astrophysics and electromagnetism.

F.P.S system: In this system, the unit of length is foot, the unit of mass is pound, and the unit of time is
second. This approach is widely utilized in the United States and a few other countries, particularly in
engineering and construction. Specific industries, such as aviation and military, still use English units.

M.K.S: In this system, the unit of length is metre, unit of mass is kg, and the unit of time is second. It is
a coherent system, which means that derived units are directly based on base units, with no arbitrary
conversion factors. It serves as the foundation for the present SI system and is widely utilized in science
and most sectors.

S.I System: This system is an improved and extended version of M.K.S system of units. From 1971 till
date, the internationally accepted unit system for measurement is Systéme International d’units (SI
units).

Important notes:
¢ InIndia, the National Physical Laboratory (New Delhi) has the responsibility of maintenance and
improvement of physical standards of length, mass, time, etc.

e The ‘CGS’, ‘MKS’ and SI units are decimal or metric systems of units and ‘FPS’ is not a metric
system. It is a British system of units.

e In December 1998, the National Aeronautics and Space Administration (NASA), USA, launched
the Mars Climate Orbiter to collect data about the Martian climate. Nine months later, on
September 23, 1999, the Orbiter disappeared while approaching Mars at an unexpectedly low
altitude. An investigation revealed that the orbital calculations were incorrect due to an error in
the transfer of information between the spacecraft’s team in Colorado and the mission navigation
team in California. One team was using the English FPS system of units for calculation, while the
other team was using the MKS system of units. This misunderstanding caused a loss of 125 million
dollars approximately.
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Significance of SI unit:
e Universally accepted for scientific, commercial, and industrial applications.
e Itis alogical and decimal-based approach that facilitates conversions.
e Sl units are exceedingly accurate and reproducible.
e Encourages worldwide collaboration in science, technology, and commerce.

Classification:
With the development of science & technology, the three fundamental quantities like mass, length &
time were not sufficient and hence many other quantities like electric current, heat etc. were introduced.
Thus, unit system was modified with addition of four other fundamental quantities and two
supplementary quantities. Units are broadly classified into:

e Fundamental (base) units

e Derived units and

e Supplementary units

i) Fundamental (base) units:

There are seven fundamental quantities such as Length, Mass, Time, Electric current, Temperature,
Amount of substance and Luminous intensity. From the combinations of these basic quantities, all other
physical quantities can be derived. The units corresponding to fundamental quantities are called
fundamental units and they are listed below.

BASIC QUANTITY SI UNIT SYMBOL

Length Metre M

Mass Kilogram Kg
Time Second S
Electric current Ampere A
Temperature Kelvin K

Amount of substance Mole Mol
Luminous intensity Candela Cd

1. Meter (m) - Unit of Length

The unit of length is meter (m). It is used to calculate the separation between two points or the size or
extend of items. The meter is defined as the distance that light travels in a vacuum at a time interval of
1/299,792,458 seconds.

2. Kilogram (kg) - Unit of Mass

The unit used for defining mass is kilogram (kg). That is, it is a tool for calculating an object's mass.
The kilogram is defined as the mass of a platinum-iridium cylinder, which serves as the worldwide
prototype for the kilogram, or as the Planck constant.

The range of masses for different objects:

Object Order of Mass (kg) Object Order of Mass
Electron 1073%kg (kg)
Proton or Neutron 107%" kg Dust particle 10~ %kg
Uranium atom 10~%5kg Raindrop 10~%kg
Red blood corpuscle 10~ kg Mosquito 10> kg
A cell 107 10kg Grape 1073kg
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Frog 101 kg Earth 10%5kg
Human 10%kg Sun 103%kg
Car 103 kg Milky way 10*1 kg
Ship 105kg Observable Universe 10°°kg
Moon 1023 kg

3. Second (s) — Unit of Time

The unit used for defining time is second (s). It is used to calculate Used to calculate how long events
or the time between them last. The second is defined by the frequency of the radiation corresponding
to the transition between two hyperfine levels of the ground state of the cesium-133 atom. It is
9,192,631,770 periods of this radiation.

The order of time intervals for different events:

Event Order of Time Interval (s)
Lifespan of the most unstable particle 1072*s
Time taken by light to cross a distance of nuclear size 107225
Period of X-rays 1071%s
Time period of electron in hydrogen atom 10715
Period of visible light waves 107155
Time taken by visible light to cross through a windowpane 1078s
Lifetime of an excited state of an atom 10785
Period of radio waves 107%s
Time period of audible sound waves 1073s
Wink of an eye 1071s
Travel time of light from Moon to Earth 10%s
Travel time of light from Sun to Earth 10%s
Half-life time of a free neutron 103s
Time period of a satellite 10*s
Time period of rotation of Earth around its axis (one day) 105s
Time period of revolution of Earth around the Sun (one year) 107 s
Average life of a human being 10°s
Age of Egyptian pyramids 1011s
Age of Universe 107s

4. Ampere (A) - Unit of Electric Current

The unit used for defining Electric current is Ampere (A). It is used to measure the flow of electric charge
in a conductor. The ampere is defined as the constant current that, if maintained in two straight, parallel
conductors of infinite length and negligible cross-section, would produce a force of 2 X 10~” newtons
per meter of length between the conductors.

5. Kelvin (K) - Unit of Temperature

The unit of temperature is kelvin (K). It is used to measure the thermodynamic temperature, which is the
degree of hotness or coldness of an object or system.

The kelvin is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
Absolute zero (0 K) is the point at which molecular motion ceases.



Professor Academy + @

The primary points for the International Practical Temperature Scale of 1968:

Temperature Point Temperature Temperature
(°C) (°F)
Triple Point of Equilibrium Hydrogen -259.34 -434.81
Boiling Point of Equilibrium Hydrogen at 25/76
: Ngrmal Pressui,e : ~296.108 ~428.99
Normal Boiling Point (1 atm) of Equilibrium Hydrogen -252.87 -423.17
Normal Boiling Point of Neon -246.048 -410.89
Triple Point of Oxygen -218.789 -361.82
Normal Boiling Point of Oxygen -182.962 -297.33
Triple Point of Water 0.01 32.018
Normal Boiling Point of Water 100.00 212.00
Normal Freezing Point of Zinc 419.58 787.24
Normal Freezing Point of Silver 961.93 1763.47
Normal Freezing Point of Gold 1064.43 1947.97

Conversion Formulas:
e Celsius to Fahrenheit: F = z x C+ 32

e Fahrenheit to Celsius: C = g x (F—-32)

e Celsiusto Kelvin: K = C + 273.15
e Kelvin to Celsius: C = K — 273.15

« Fahrenheit to Kelvin: K = g x (F — 32) + 273.15
e Kelvin to Fahrenheit: F = g X (K —273.15) + 32The secondary fixed points for the International

Practical Temperature Scale of 1968, listing the specific points and their corresponding
temperatures in degrees Celsius:

Temperature Point Temperature Temperature Point Temperature
(*C) (*C)
Triple point, normal H2 -259.194 Freezing point, Hg 356.66
Boiling point, normal H2 -252.753 Freezing point, S 444,674
Triple point, Ne -248.595 Freezing point, Cu-Al eutectic 548.23
Triple point, N2 -210.002 Freezing point, Sb 630.74
Boiling point, N2 -195.802 Freezing point, Al 660.74
Sugg?ﬁg?ﬂﬁ’;l)m’ -78.476 Freezing point, Cu 1084.5
Freezing point, Hg -38.862 Freezing point, Ni 1455
Ice point 0 Freezing point, Co 1494
Triple point, 26.87 Freezing point, Pd 1554
phenoxybenzamine
Triple point, 122.37 Freezing point, Pt 1772
Benzoic acid
Freezing point, In 156.634 Freezing point, Rh 1963
Freezing point, Bi 271.442 Freezing point, Ir 2447
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321.108
327.502

Freezing point, Cd Freezing point, W ‘

Freezing point, Pb

6. Mole (mol) - Unit of Amount of Substance

The unit for amount of substance is mole (mol). It is used to measure the amount of substance in terms
of the number of particles (atoms, molecules, ions, etc.).

The mole is the amount of substance that contains as many entities (atoms, molecules, etc.) as there are
in 12 grams of carbon-12. This is approximately 6.022 x 10* entities.

7. Candela (cd) - Unit of Luminous Intensity

The unit for luminous intensity is candela (cd). It is used to measure the perceived power of light in a
specific direction.

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic
radiation of frequency 540 X 10'* hertz and that has a radiant intensity of 1/683 watts per steradian
in that direction.

ii) Derived units:

The units that are expressed in terms of fundamental units are called derived units. For example, the
unit of velocity can be derived by finding its relationship with basic quantities such as length and time.
displacement

velocity = preees

Thus, the unit of velocity is determined to be m/s. Some of the examples for derived units are as follows:

Physical Quantity Formula Symbol Notation
Area Length x Width A m?
Volume Length X Width x Height \% m?
Frequency 1 / Period F Hz, s™*
Density Mass / Volume P kg/m?
Velocity Displacement / Time \% m/s
Angular Velocity Angle / Time Q rad/s
Acceleration Velocity / Time A m/s?
Angular Acceleration Angular Velocity / Time A rad/s?
Volumetric Flow Rate Volume / Time Q m3/s
Force Mass x Acceleration F N (kg - m/s?)
Surface Tension Force / Length Y, O N/m, J/m?
Pressure Force / Area P N/m? Pa (kg/m - s?)
Dynamic Viscosity Shear Stress / Velocity Gradient n, U N - s/m? Pl (kg/m - s)
Kinematic Viscosity Dynamic Viscosity / Density N m?/s
Work, Energy Force x Distance W, E J, N-m (kg - m?/s?)
Power Work / Time P W (J/s)
Heat Flux Density Heat Flow / Area Q W/m?
Volumetric Heat Rel
olume rlcéatza elease Heat Flow / Volume Q W/m?
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Heat Flow / (Area x
Heat-Transfer Coefficient eat Flow (_ rea H W/m?- K
Temperature Difference)
Specific Enthalpy Enthalpy / Mass H J/kg
Specific Heat Capacity Heat / (Mass X Temperature) C J/kg - K
Heat Flow / (Area x
Thermal Conductivity eat Flow / ( re,a K W/m-K
Temperature Gradient)
Mass Flow Rate Mass / Time m kg/s
Mass Flux Density Mass Flow Rate / Area jm kg/m?-s
Mass-Transfer Coefficient Mass Flow / Area B m/s
Electric Charge Current x Time Q C(A-s)
Electromotive Force Work / Charge E, emf V (kg - m?/A - s?)
Electrical Resistance Voltage / Current R Q (kg - m?/A?*- s%)
Electrical Conductivity 1 / Resistivity X S/m (A% - s*/kg - m?)
Electric Capacitance Charge / Voltage C F (A%-s*/kg - m?)
Magnetic Flux Magnetic Field X Area ) Wb (kg - m?/A - s?)
Inductance Magnetic Flux / Current L H (kg - m?/A? - s?)
Magnetic Permeability Inductance / Length il H/m (kg - m/A? - s?)
Magnetic Flux Density Magnetic Flux / Area B T (kg/A - s?)
M tic F / (C t x
Magnetic Field Strength agnetic Force / (Curren H A/m
Length)
Luminous Flux Luminous Intensity X Solid Angle Pv Im (cd - sr)
Luminance Luminous Flux / Area L cd/m?
[lluminance Luminous Flux / Area E Ix (Im/m?)

iii) Supplementary units:

In the International System of Units (SI), the term "supplementary units" referred to a specific set of units
that were not classified as fundamental (base) or derived units but were used to describe specific
quantities related to geometry or angles. However, the distinction of supplementary units has been
removed in the current definition of SI units. As of the 2019 redefinition of the SI system, the concept of
supplementary units is no longer formally part of the SI system. The supplementary quantities of plane
and solid angle were converted into Derived quantities in 1995 (CGPM)

Nevertheless, it's useful to know the historical context and what these units were used for:

SUPPLEMENTARY QUANTITIES SI UNIT SYMBOL
Plane angle Radian rad
Solid angle Steradian ST

1. Radian (rad)
e Quantity: Plane Angle (d6)

e Definition: The radian is the angle subtended at the centre of a circle by an arc whose length (ds)

is equal to the radius(r) of the circle. d6 = %
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e Relationship to SI Base Units: It is a dimensionless quantity because it is defined as the ratio of
two lengths (arc length and radius).

2. Steradian (sr)
e Quantity: Solid Angle
e Definition: The steradian is the unit of solid angle in three-dimensional space. A solid angle (d(2)
is defined by the area on a sphere's surface divided by the square of the radius of the sphere. One

steradian is subtended by a spherical surface area equal to the square of the radius. d(1 = i—? where
dA is the area subtended, and r is the radius.
Rules and Conventions for Writing SI Units and Their Symbols

Naming Units: Units named after scientists are not written with a capital initial letter. Examples:
newton, henry, ampere, watt.

Symbols for Units Named After Scientists: Symbols of units named after scientists should be written
with an initial capital letter. Examples: N for newton, H for henry, A for ampere, W for watt.

Symbols for Units Not Derived from Proper Nouns: Small letters are used as symbols for units not
derived from a proper noun. Examples: m for metre, kg for kilogram.

Punctuation: No full stop or other punctuation marks should be used within or at the end of symbols.
Example: 50 m (not 50 m.).

Plural Form: Symbols of units are not expressed in plural form. Example: 10 kg (not 10 kgs).

Temperature: When temperature is expressed in kelvin, the degree sign is omitted. Example: 283 K
(not 283° K). When expressed in Celsius, the degree sign should be included. Examples: 100°C (not 100
C), 108°F (not 108 F).

Use of Solidus (/): The solidus (/) is recommended for indicating a division of one unit symbol by
another. Not more than one solidus should be used. Examples: ms™ or m/s, JK™'mol™ (not J/K/mol).

Spacing: The number and units should be separated by a space. Example: 15 kg m™ s™ (not 15 kgms™).

Accepted Symbols: Only accepted symbols should be used. Examples: ampere (A) should not be
written as amp, second (s) should not be written as sec.

Scientific Notation: Numerical values of physical quantities should be written in scientific notation.
Example: the density of mercury should be written as 1.36 X 10* kg m~3 (not 13600 kg m™3).

The table you provided lists various units that are retained for general use, even though they are
outside the International System of Units (SI).

Name Symbol Value in SI Unit
Minute Min 60 s
Hour h 60 min = 3600 s
Day d 24 h =86400s
Year y 365.25d =3.156 X 10" s
Degree ° 1° = (m / 180) rad
Litre L 1dm? =107 m?
Tonne t 10% kg
Carat ct 200 mg
Curie Ci 3.7 x 10'° disintegrations per second (dps)
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Roentgen R 2.58 x 10™ C/kg
Quintal q 100 kg
Barn b 100 fm? = 107 m?
Are a 1 dam? = 10*> m?
Hectare ha 1 hm? = 10* m?
Standard Atmospheric Pressure atm 101325 Pa=1.013 x 10° Pa

Prefixes for Powers of Ten

In the International System of Units (SI), prefixes are used to denote multiples and submultiples of
units. These prefixes represent powers of ten and make it easier to express very large or very small
quantities. Here is a list of common SI prefixes for powers of ten:

Multiples of Ten Submultiples of Ten
Factor Name Symbol Factor | Name | Symbol
108 Exa E 107! Deci d
10" Peta P 1072 Centi Cc
102 Tera T 1073 Milli m
10° Giga G 107 | Micro 1l
108 Mega M 107° Nano n
10° Kilo K 10712 Pico p
102 Hector H 107" | Femto f
10! Deca Da 1078 Atto a

Some Important Ranges and Order of Lengths

Size of Objects and Distances Length (m)

Distance to the boundary of the observable universe 1026
Distance to the Andromeda galaxy 1022

Size of our galaxy 1021

Distance from Earth to the nearest star (other than the Sun) 1016
Average radius of Pluto’s orbit 1012

Distance of the Sun from the Earth 1011
Distance of Moon from the Earth 108
Radius of the Earth 107
Height of Mount Everest above sea level 10*
Length of a football field 102

Thickness of a paper 10~*

Diameter of a red blood cell 107°
Wavelength of light 1077

Length of a typical virus 1078

Diameter of the hydrogen atom 10710

Size of an atomic nucleus 10714

Diameter of a proton 10715

Cosmic Distances: Distances in the universe range up to 10%° meters, like the distance to the boundary
of the observable universe.
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Astronomical Distances: These include distances within our galaxy and solar system, such as the
distance to the Andromeda galaxy (10%?meters) and the distance from the Earth to the nearest star

(10'®meters).

Planetary and Terrestrial Distances: Includes distances within the solar system and on Earth, such
as the distance from the Sun to the Earth (10''meters) and the height of Mount Everest (10*meters).

Microscopic Lengths: These include the sizes of biological and atomic structures, such as the diameter
of a red blood cell (10~°meters) and the diameter of a hydrogen atom (10~ 1%meters).

Subatomic Lengths: The smallest scales include the size of atomic nuclei (10~ **meters) and the
diameter of a proton (10~ > meters).
Note: Chandrasekhar Limit (CSL) is the largest practical unit of mass. 1 CSL = 1.4 times the mass of the
Sun The smallest practical unit of time is Shake. 1 Shake = 1078 s

Some Important practical uses of each of the units:

Unit

Symbol

Value

Practical Use

Fermi

fm

1fm=10"5m

Used to describe the size of atomic
nuclei and subatomic particles in
nuclear physics.

Angstrom

1A =10"1m

Commonly used in materials science,
crystallography, and the study of
atomic structures.

Nanometer

nm

1nm=10""m

Important in nanotechnology,
semiconductor manufacturing, and
the study of molecular biology.

Micron

Mm

1pym =10"°m

Used to measure the size of cells,
bacteria, and small particles in
microbiology and medical fields.

Light Year

1light year
=9.467 X 10 m

Used in astronomy to measure vast
distances between stars and galaxies.

Astronomical Unit

AU

1AU = 1.496 x 101 m

Used to measure the distance
between celestial bodies, especially
the Earth and the Sun.

Parsec

PcC

1 parsec = 3.08 x 101 m
= 3.26light years

Used in astronomy to measure
distances between stars and galaxies,
especially in deep space.

Points to remember:

e Units are classified into Fundamental, derived and supplementary units.

e The seven fundamental quantities are Length, Mass, Time, Electric current, Temperature,

Amount of substance and Luminous intensity and the units corresponding to fundamental
quantities are called fundamental units.

e Plane angle and solid angle form the supplementary quantities and the units corresponding to

supplementary quantities are called supplementary units.

e Derived units are expressed in terms of seven fundamental units and two supplementary units.
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PRACTICE QUESTIONS

1. Which of the following is a derived unit?
a) Meter b) Kilogram
c) Newton d) Ampere

2. What is the SI unit of electric current?

a) Volt b) Coulomb

c) Ampere d) Ohm

3. Which of the following quantities is
dimensionless?
a) Strain

c) Force

b) Velocity
d) Energy

4. The unit of measurement for magnetic flux

density is:
a) Tesla b) Weber
c) Henry d) Gauss

5. Which of the following pairs is incorrectly
matched?

a) Luminous intensity - Joule

b) Electric charge - Coulomb

c) Frequency - Hertz

d) Pressure - Pascal

6. The Planck constant has the dimensions of:
a) Energy b) Action
c) Power d) Momentum

7. Which of the following is not a fundamental
SI unit?

a) Second b) Kelvin

c) Mole d) Erg

8. The unit of permittivity of free space (g,) is:
a) C2/N'm b) N'm?/C?

c)F/m d) T'm/A

9. In the CGS system, the unit of viscosity is:
a) Poise b) Pascal-second
c) Centipoise d) Newton-second

10. What is the SI unit for inductance?
a) Henry b) Farad
c) Tesla d) Weber

11. The standard kilogram is defined by:
a) A platinum-iridium cylinder kept in France
b) The mass of 1 liter of water at 4°C

c) The mass of a carbon-12 atom

d) A cylinder of silicon-28

12. Which of the following units is used to
measure radioactivity?
a) Gray

c) Becquerel

b) Sievert
d) Rad

13. The unit "farad" is used to measure:

a) Capacitance b) Inductance

c) Magnetic flux d) Electric potential
14. Convert 5m/s into km/h.

a) 30 km/h b) 14 km/h
c) 46 km/h d) 18 km/hr
15. What is the SI unit of resistance?
a) Ampere b) Volt

c) Coulomb d) Ohm

16. What is the SI unit of permittivity (£)?

a) Newton/metre b) coulomb/meter
c) Farads/meter d) Joules/meter

17. What is the SI unit of the Surface tension?

a) N/m b) J/m
c)C/m d) N/m?
18. What is the SI unit of Heat?

a) Kelvin b) Joule
c) calorie d) Erg
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2. DIMENSIONS OF PHYSICAL QUANTITY

The dimension of a physical quantity is a way of expressing how that quantity is related to the base
quantities of the International System of Units (SI), like length (L), mass (M), time (T), etc. It provides
an abstract description of the physical nature of the quantity, which allows us to understand how it
behaves in terms of fundamental physical concepts. The dimensions of five fundamental physical
quantities are listed below. They are denoted using square brackets [].

Fundamental Quantities Dimension
Length [L]
Mass [M]
Time [T]
Electric current [A]
Temperature [K] or [0]

If a physical quantity Q can be expressed as a product of powers of the fundamental quantities, its
dimensional formula can be written in the form:
Q=[M=L’T*I0°NJ¢]

Here, a,b,c,d,e.f,g are the powers (exponents) to which each base quantity is raised in the expression for
the dimensional formula of the fundamental physical quantities like mass, length, time, electric current,
thermodynamic temperature, amount of substance and luminous intensity. But usually, the dimension
of any physical quantity is represented by the combination of three fundamental quantities like [M], [L]
and [T].

The dimension of unknown physical quantity can be determined from the formula of the quantity. For
example, if we want to find the dimension of Area, then from the formula Area=length x length, its
dimension can be predicted to be [L?] or [M°L*T°] where the power represents the dimension of the
quantity. In this case, area has no dependence on mass and time and hence its powers are zero. Some
of the derived physical quantities are listed below:

Here is the table with the dimensional formulas added for each physical quantity:

. . . ) Dimensional
Physical Quantity Expression Unit Formula
Area length x breadth m? [L?]
Volume area X height m? [L3]
Velocity displacement / time ms™! [LT™1]
Acceleration velocity / time m s2 [LT~2]
Angular Velocity angular displacement / time rad s7! [T~1]
Angular Acceleration angular velocity / time rad s72 [T~2]
Density mass / volume kg m™ [ML3]
Linear Momentum mass X velocity kgms™! [MLT™?]
Moment of Inertia mass X (distance)? kg m? [ML2]
Force mass X acceleration kgms™Zor N [MLT™?]
Pressure force / area N m™or Pa [ML™1T~2]
Energy (Work) force x distance N m orJ [ML?T 2]
work / time J s~! or watt s
Power W) [MLAT "]
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Impulse force X time Ns [MLT™1]
Surface Tension force / length Nm™ [MT2]
Moment of Force force x distance N m [ML2T 2]

(Torque)

Frequency Cycles =+ Time Hertz [T71]
Electric Charge current X time C [AT]
Current Density current / area Am™ [AL™?]

Magnetic Induction force / (current x length) N At;;r; or [MLT 2A™1]
Force Constant force / displacement Nm™ [MT2]
Planck's Constant energy of photon / frequency Js [MLZT1]

Specific Heat (S) heat energy / (mass Jkg 1K™ [ML2T—2K™1]
temperature)
Boltzmann Constant (k) energy / temperature JK™ [ML2T—2K~1]

Voltage Energy + Charge Volt [ML2T73A71]

Resistance Voltage =+ Current Ohm [ML2T 3A2

Capacitance Charge + Voltage Farad [M~1L2T*A%]
Magnetic Flux Voltage x Time Weber [ML2T72A71]
Inductance Magnetic Flux + Current Henry [ML2T~2A72]

Principle of Homogeneity of Dimensions
Definition: The principle of homogeneity of dimensions states that the dimensions of all the terms in a
physical expression should be the same. In other words, all terms in an equation must have the same
dimensional formula for the equation to be dimensionally consistent.

Example: Consider the equation for motion: v = u? + 2as In this equation:
« v? (velocity squared) has dimensions [L?>T~2].

« u? (initial velocity squared) also has dimensions [L2T2].

« 2as (twice acceleration times displacement) has dimensions [L2T~2].

Since all terms on both sides of the equation have the same dimensions [L?T~2], the equation is

dimensionally homogeneous. This confirms that the equation is dimensionally consistent.

This principle helps to ensure that physical equations are correct and that operations involving physical

quantities are consistent with their units of measurement.

Physical Quantity / Equation Expression | Dimensional Formula
Kinematic equation for motion vZ = u? + 2as [L?T~?]
i 1
Displacement s=ut+ Eatz [L]
- S -1
Velocity V== [LT™1]
Acceleration A [LT2]
t
Force (Newton's 2nd Law) F = ma [MLT™2]
Work W = F xd [ML?T~2]
. . 1 2m—2
Energy (Kinetic Energy) B, = Emvz [MLAT—#]
Gravitational Potential Energy U = mgh [ML2T~2]

12
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Power p= w [ML2T~3]
t
Momentum p = mv [MLT™1]
Impulse ] =F xt [MLT1]
Work-Energy Theorem W = AE [ML?T 2]
Gravitational Force (Newton's Law) P Sy [M~1L3T 2]
2
Electric Force (Coulomb's Law) F =g 42 [M~1L3T2A%]
e rz
Ohm's Law (for Electric Circuit) V = IR [ML2T3A71]
Capacitance (for a Parallel Plate Capacitor) = €A [M~1L73T*A%]
~d
Inductance . N? [ML2T2A~?]
R
Wave Speed (in a string) T [LT™1]
v= |-
m
Planck's Equation (Energy of Photon) E =hv [ML?T™1]

-

1. Find the dimensional formula for Self-

inductance.

a) ML*TA b) ML?T?2A

c) ML*T d) MLT?2A?

(HINT: e = —L% where e is the emf/potential)

Answer: a) ML*T?A

2. Which of the following equation is

dimensionally incorrect:

a) v=u+at

b) s=ut+at?/2

c) F=ma+bv (where b is a proportional constant)

d) v=u

Answer: c) F=ma+bv

Solution:

e v=u+at [v]=[u]+[at]: Both the terms in LHS
and RHS are [LT™], so it is dimensionally
homogeneous.

e s=ut+at?/2 [s]=[ut]+[at?/2]: Both terms are
in [L], so it is dimensionally homogeneous.

e F=ma+bv (where b is a proportional
constant)[F]=[M][LT?]=[MLT?]. If b has
dimensions [M], then [bv]=[MLT"!], which is
inconsistent. The equation is dimensionally
incorrect.

Let’s test what we have learnt so far: Shall we?

\

3. Find the dimensions of energy (E) using
E=F-L.

a) ML*T?

c) MLT*
Answer: a) ML*T™*
Solution: [E]=[F]-[L]=[MLT?}-[L]=[ML*T?]

b) ML2T
d) ML2T2A>

4. The time period T of a pendulum depends
on: Length 1, Gravitational acceleration g.
Using dimensional analysis, find the formula.

a) Toc\/g b) Toc\/é7m

c) Tec/1g d) To \/%

Answer: a) Tx \E

Solution: Assume Tuxl?g® so: [T]=[1]*[g]°

Substitute dimensions: [T]=[T]},[1]=[L],[g]=[LT]
[TI=[LIFLT =L T

On equating the powers of L. and T: For L: a+b=0
For T: —2b=1 so b=—1/2 and after solving for a, we

geta=1/2
/

Toc\/1
g

13
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Limitations of Dimensional analysis
e This method gives no information about the dimensionless constants in the formula like 1, 2,
........ T, e (Euler number), etc.
e This method cannot decide whether the given quantity is a vector or a scalar.
e This method is not suitable to derive relations involving trigonometric, exponential and
logarithmic functions.
e [t cannot be applied to an equation involving more than three physical quantities.

Applications of Dimensional analysis:

Dimensional analysis: Understanding the dimensions of fundamental quantities is crucial for
dimensional analysis, which is used to check the consistency of equations and conversions between
units.

Physical laws: The dimensions of fundamental quantities help describe how physical laws are
formulated. For example, the equation for force F=ma involves mass and acceleration, which is the rate
of change of velocity (L/T), so the dimensions of force are [M][L][T]™

Unit conversions: Knowing the dimensions of fundamental quantities helps in converting between
different units and systems of measurement.

Points to remember:
e Usually, the dimension of any physical quantity is represented by the combination of [M], [L] and
[T] and the power of each quantity denotes the dimension of that quantity.
e Dimensional analysis is useful in finding the relationship between physical quantities, to check
the accuracy of the formula and to find the units of unknown physical quantities.

4 PRACTICE QUESTIONS )
1.If force (F) is expressed as a function of mass b) Force and Pressure
(m), length (L), and time (T), what is its c)Energy and Work
dimensional formula? d) Momentum and Force
a)[MLT" b) [M L T?
c) [ML*T? d) [M?L T?

6.In the equation y = asin(wt + kx), where y is
displacement, t is time, and x is position, what
2.Which of the following physical quantities is are the dimensions of w (angular frequency)?

dimensionless? a) [T] b) [L T
a) Refractive index b) Electric charge c) [L 1] d) [M T
c) Magnetic flux d) Thermal conductivity

7.The Buckingham wnt theorem is wused in
3.If the velocity (v) of a particle is given by the dimensional analysis to:
a) Convert units from one system to another

’215
equation v= |—, where E is energy and m is . . . . .
E m’ 8y b) Determine the dimensions of a physical quantity

mass, what are the dimensions of E? c) Reduce the number of variables in a physical problem

a) [M L*> T?] b) [M L T?] d) Find the exact numerical value of physical quantities

c) [M? L2 T d) [M L2 T?] . . . .
8.The dimensional formula for kinematic

4.The dimensions of Planck's constant (h) are: viscosity is:

a) [M L2 T"] b) [M L T] a) [M L T] b) [L2 T-]

c) [M?L T? d) [ML*T? c)[MLT? d) [L T

5.Which of the following pairs have the same 9 If the period of a simple pendulum is given by
dimensions?

Q) Work and Power

T=2n \E, where L is the length and g is the/

14
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acceleration due to gravity,
dimensional formula for T?
a)[L T

c) [T']

what is the
b) [M° L! T
d) [L T

10.Which of the following is a correct statement
about dimensional homogeneity?

a) All equations must have the same dimensions on
both sides

b) Dimensions can be added or subtracted

c) Dimensionless constants affect dimensional analysis
d) Dimensions are only applicable to fundamental
quantities

11.The dimensions of magnetic field intensity (H)
are:

a) [MT*A"
c)[ML!'T*A"

b) [M L T2 AY]
d) [L" TA]

12.The ratio of two quantities with the same
dimensions is:

a) A scalar b) A vector

c) A dimensionless quantity  d) A unit quantity

13.Dimensional analysis can be used to derive:
a) Numerical values of constants

b) Functional forms of physical laws

c) Exact solutions to differential equations

d) Empirical formulas for complex phenomena

14.The dimensions of electric field intensity (E)
are:

a)[MLT?A"
¢)[MLT2A]

b) [M L2 T* A"]
d) [M L2T2 A"

15.The dimensional formula of thermal
resistance is:
a) [M L T'0] b) [M L2 T? 6]

) [M L2 T? 6] d) [M° L° T° 8]

"P-S1°e-H1°q-€1°0-21P-118-010-6°q-8°0-L €-9‘0-G‘e-p e-g‘v-g‘q-1 :suy
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3. SIGNIFICANT FIGURES

Significant figures (sig figs) are the digits in a measurement that provide useful information about its
precision. These statistics are crucial in scientific computations because they represent the accuracy of
the measurements used.

The following rules must be remembered while determining the number of significant figures.

1. All non-zero digits are significant:
Any digit from 1 to 9 is considered significant. For example, in the number 1342, all digits are non-
zero, so it has four significant figures.

2. All zeros between two non-zero digits are significant:
Zeros that appear between non-zero digits are significant. For example, 2008 has four significant
figures because the zeros are between 2 and 8.

3. All zeros to the right of a non-zero digit but to the left of a decimal point are significant:
Zeros that come after a non-zero digit but before the decimal point are considered significant. For
example, 30700. has five significant figures because of the trailing zeros before the decimal.

4. For numbers without a decimal point, terminal or trailing zeros are not significant:
When there’s no decimal point, trailing zeros are not counted as significant. For example, 30700 has
only three significant figures because the zeros are not counted.

5. For numbers less than 1, zeros to the right of the decimal point but to the left of the first
non-zero digit are not significant:

Leading zeros in decimal numbers are not significant. For example, 0.00345 has three significant

figures because the zeros before 3 are not significant.

6. All zeros to the right of a decimal point and to the right of a non-zero digit are
significant:

In decimal numbers, zeros to the right of the decimal and after a non-zero digit are significant. For

example, 40.00 has four significant figures, and 0.030400 has five significant figures.

7. The number of significant figures does not depend on the system of units used:
The number of significant figures is the same regardless of the units in which the measurement is
expressed. For example, 1.53 cm, 0.0153 m, and 0.0000153 km each have three significant figures.

Notes:

Multiplying or dividing exact numbers: Multiplication or division by exact numbers (like 2 in the
formula for circumference, S = 2ntr) does not affect the significant figures, as these are considered to
have infinite significant figures.

Power of 10 does not affect significant figures: The exponent in scientific notation does not
influence the significant figures. For example, 5.70m, 5.70 X 10%2cm, and 5.70 X 103mm all have three
significant figures.

Rounding off

Rounding off means dropping of unwanted/ insignificant figures. Rounding off significant figures is a
crucial process in maintaining the correct precision in your calculations and results. Problem: Round off
3.84 to two significant figures.
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Here, there are three significant figures and in order to round off, 4 in 3.84 is considered to be
insignificant and is dropped off. However, some of the rules has to be followed while dropping off digits.
If the digit to be dropped is smaller than 5, then the preceding digit should be left unchanged:
o When rounding, if the digit being dropped (after the decimal or in the units place) is less than 5,
the preceding digit remains the same.
o Example i: 7.32 is rounded off to 7.3 because the digit 2 (to be dropped) is smaller than 5.
o Example ii: 8.94 is rounded off to 8.9 because the digit 4 (to be dropped) is smaller than 5.

If the digit to be dropped is greater than 5, then the preceding digit should be increased by 1:
o If the digit being dropped is greater than 5, the preceding digit is increased by 1.
« Example i: 17.26 is rounded off to 17.3 because the digit 6 (to be dropped) is greater than 5.
o Example ii: 11.89 is rounded off to 11.9 because the digit 9 (to be dropped) is greater than 5.

If the digit to be dropped is 5 followed by digits other than zero, then the preceding digit
should be raised by 1:
o If the digit to be dropped is 5 and is followed by non-zero digits, the preceding digit should be
raised by 1.
o Example i: 7.352, when rounded off to the first decimal, becomes 7.4 because the digit 5 (to be
dropped) is followed by 2, a non-zero digit.
o Example ii: 18.159, when rounded off to the first decimal, becomes 18.2 because the digit 5 (to
be dropped) is followed by 1, a non-zero digit.

If the digit to be dropped is 5 or 5 followed by zeros, then the preceding digit is not changed
if it is even:
o If the digit being dropped is 5 (or 5 followed by zeros) and the preceding digit is even, the
preceding digit remains unchanged.
o Example i: 3.45 is rounded off to 3.4 because the digit 5 (to be dropped) is preceded by an even
digit, 4.
o Example ii: 8.250 is rounded off to 8.2 because the digit 5 (to be dropped) is preceded by an
even digit, 2.

If the digit to be dropped is 5 or 5 followed by zeros, then the preceding digit is raised by 1 if
it is odd:
o If the digit being dropped is 5 (or 5 followed by zeros) and the preceding digit is odd, the
preceding digit is increased by 1.
o Example i: 3.35 is rounded off to 3.4 because the digit 5 (to be dropped) is preceded by an odd
digit, 3.
o Example ii: 8.350 is rounded off to 8.4 because the digit 5 (to be dropped) is preceded by an odd
digit, 3.

Rounding off in arithmetic operations:

The significant figures in the result obtained after multiplication and division should not be more than
the significant figures of the original numbers. Example while dividing 4.237 by 2.51, the result should
have same significant figures as that of the number with least significant figures (that is 2.51). Otherwise,
the result must be round off. Thus, the result would be 1.69. This is the case for multiplication as well.

But in the case of addition and subtraction, the result should have same number of decimal places as
that of the original value. Example while adding 22.84, 32.304 and 30.314, the result obtained will be
85.458. The addend 22.84 is correct to two decimal places but the result is corrected to 3 decimal places.

17
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It will be contradictory when the result is more precise than the given value. Thus, 85.458 must be round
off to 4 significant figures and the answer becomes 85.46. This is the case for subtraction as well.

f Come, Let’s Solve this Like a Pro! )
1. Add 5.67+12.3+0.004 and express the 2. Express the result of the product
result with the correct number of 4.56x3.2 with the correct number of
significant figures. significant figures.

a)17.974 b) 17.97 a)14.592 b) 14.59

c) 17.9 d) 18.0 c) 14.5 d) 15

Answer: d) 18.0 Answer: d) 15

Solution: Solution:

First, we add: 5.67+12.3+0.004=17.974. Since 456x%3.2=14.592. Since the number with the
the number with the least number of decimal least significant figures is 3.2 (2 significant
places is 12.3 (1 decimal place), we round the figures), we round the result to 2 significant

\result to 1 decimal place figures. )

Points to remember:
e All non-zero digits are significant.

All zeros trapped between two non-zero digits are significant.

The ending zeros are not significant if there are no decimal points.

The zeros that are placed after the decimal point are significant.

Zeros before and after decimal point are not significant.

Number of significant figures should not get changed while changing the units.

While rounding off, if the insignificant number is less than 5, then it can be dropped.

While rounding off, if the insignificant number is greater than 5, then preceding digit is increased

by 1.

e While rounding off, if the insignificant number is exactly 5, then check the preceding digit. If it is
even, then insignificant digit is dropped and if it is odd then preceding digit is increased by 1.

e The significant figures in the result obtained after multiplication and division should not be more
than the significant figures of the original numbers.

e In the case of addition and subtraction, the result should have same number of decimal places as
that of the original value.

18
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PRACTICE QUESTIONS

N

1. How many significant figures are there in the
number 0.004560?
a) 3 b) 4

c)5 d) 6

2. Which of the following numbers has 4
significant figures?
a) 0.0405
c) 3000

b) 2.500
d) 123.45

3. In the number 7.030, how many significant
figures are there?
a) 2 b) 3

c) 4 d) 5

4. When multiplying 6.38 by 2.0, how many
significant figures should the result have?
a) 1 b) 2 c)3 d) 4

5. Which of the following measurements is
correctly rounded to three significant figures?

a) 4.0071 — 4.01 b) 0.00345 — 0.0034

c) 78.95 — 79.0 d) 5001 — 500

6. What is the result of 8.59 + 3.41 rounded to the
correct number of significant figures?

a) 11.9 b) 12.0 c) 12 d) 11.90

7. Which of the following correctly expresses
0.000620 in scientific notation with the
appropriate number of significant figures?

a) 6.2 x 10 b) 6.20 x 10*

c) 62 x 10° d) 0.62 x 107

\_
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8. The number 1500 has how many significant
figures?
a) 2
c) 4

b) 3
d) Ambiguous

9. How many significant figures are in the
measurement 0.0520 m?
a)2 b) 3

c) 4 d) 5

10. If you multiply 4.56 by 0.030, how many
significant figures should your answer have?
a)l b) 2 c)3 d) 4

11. What is the correct number of significant
figures in the sum of 12.11 + 0.22 + 3.1?

a) 2 b) 3 c) 4 d) 5

12. The product of 2.50 and 3.40 should be
reported with how many significant figures?
a) 1 b) 2 c)3 d) 4

13. Which of the following numbers does not have
5 significant figures?
a) 0.003205

c) 500.00

b) 12300
d) 205.30

14. When dividing 56.4 by 1.23, to how many
significant figures should the result be rounded?
a) 2 b) 3 c) 4 d)5

15. What is the number of significant figures in
0.00670?
a) 2 b) 3

c) 4 d) 5

/
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4. PRECISION AND ACCURACY

Precision and accuracy are the terms used to describe the quality of measurements or results, but they
refer to different aspects:

1. Precision
Precision refers to the degree to which repeated measurements under the same conditions yield the
same results. A measurement is precise if there is little variation or spread in repeated measurements.
o High Precision: If a set of measurements is close to each other but not necessarily close to the
true value, the measurements are considered precise.
e Low Precision: If the measurements vary significantly from each other, they are considered
imprecise.

Example: If you measure the length (originally 4 cm) of an object several times and get values like 5.01
cm, 5.00 cm, and 5.02 cm, the measurements are precise because they are very close to each other,
even if they are not necessarily the true value.

Note: The formula for precision is context-dependent. The following are some popular precision
formulas and interpretations:

Precision in Statistics

Precision is often quantified by the standard deviation or variance of repeated measurements.
True Value

Precision =
Measured value range

Where:
Alternatively, precision can be expressed as: Precision = 1/Standard Deviation
Higher precision implies lower standard deviation (values are closer together).

Precision in Information Retrieval
In machine learning or classification tasks, precision evaluates the proportion of true positive

predictions out of all positive predictions:
Truepositives(TP)
True Positives (TP)+False Positives (FP)

Precision =

Where:
e True Positives (TP) = Correctly predicted positive cases.
e False Positives (FP) = Incorrectly predicted positive cases.

Instrument Precision
Precision in instrumentation or measurement systems is typically represented by the repeatability of
measurements and can be calculated using the coefficient of variation (CV):
CvV= Ex 100
Where:

e 0 = Standard deviation of the measurements.
e U = Mean of the measurements.

Ways to Improve Precision of Measurement:
¢ Use High-Resolution Instruments: Select instruments with finer scales or higher sensitivity to detect
small variations.
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¢ Control Environmental Conditions: Maintain stable conditions such as temperature, humidity, and
pressure to reduce variability. Eliminate vibrations, electromagnetic interference, or other
disturbances.

e Standardize Measurement Procedures: Use consistent methods and techniques during data
collection. Follow a strict protocol to avoid variations in handling or measurement setup.

¢ Reduce Random Errors: Repeat measurements multiple times and average the results. Identify and
minimize sources of random variability, such as operator differences or transient conditions.

e Ensure Instrument Stability: Regularly calibrate instruments to avoid drift. Use tools designed for
long-term stability and repeatability.

e Use Proper Sampling Techniques: Collect representative and evenly distributed samples. Avoid
biased sampling methods that introduce variability.

e Minimize Human Errors: Train operators thoroughly in using instruments and following
procedures. Use automated systems where feasible to reduce subjective errors.

¢ Increase Sample Size: Perform more measurements to minimize the influence of random outliers.
Larger datasets often result in more consistent results.

e Optimize Instrument Setup: Use appropriate settings, such as correct range or mode for the
measurement. Ensure sensors and probes are properly positioned and secured.

e Use High-Quality Reference Standards: Compare measurements to well-defined and traceable
reference standards to maintain consistency.

o Apply Statistical Analysis: Use techniques like variance analysis to identify and address sources of
imprecision. Eliminate or account for outliers in datasets.
By focusing on these strategies, one can enhance the repeatability and reliability of your measurements,
leading to higher precision.

2. Accuracy
Accuracy refers to how close a measurement is to the true value or the accepted reference value. A
measurement is accurate if it is close to the true value, regardless of how variable the repeated
measurements are.

e High Accuracy: The measurement is close to the true value.

e Low Accuracy: The measurement is far from the true value.
A single measurement can be evaluated for accuracy, or the average of multiple measurements can be
compared to the true value. Accuracy can be expressed as the percentage of error or deviation:

Accuracy (%)=(1 — )XIOO

Error = Measured value — True value.

error

true value

Example: If the true length of an object is known to be 5.00 cm, and you measure it to be 5.01 cm, the
measurement is accurate because it is close to the true value.

To improve accuracy of measurement:
e Calibrate Instruments: To achieve accurate readings, calibrate equipment on a regular basis with
established references.
e Use High-Quality Equipment: Choose instruments with the proper sensitivity and resolution for
your measurements.
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e Minimize systematic errors: Identify and eliminate sources of bias (such as environmental
influences or defects in equipment). Apply corrections for known and unavoidable biases.

e Standardize procedures: To reduce variability,

methodologies.

measure using consistent and verified

e Control Environmental Factors: Maintain steady conditions (temperature, humidity, and vibration).
Reduce extraneous influences, such as electromagnetic interference.

e Train operators: Provide comprehensive training on how to operate equipment correctly.
Standardize data gathering processes for all personnel. Validate and cross-check results.

Compare the results to known standards or reference

Perform cross-validation with multiple instruments or approaches.

methods.

¢ Increase measurement repetition: To eliminate random mistakes, take numerous measurements

and average the results.

Relationship Between Precision and Accuracy

High precision, high accuracy: Measurements are both close to each other and close to the true

value. This is ideal.

High precision, low accuracy: Measurements are close to each other but not close to the true value.

This indicates a consistent systematic error.

Low precision, high accuracy: Measurements are spread out but on average close to the true value.

This may indicate random errors but no systematic bias.

Low precision, low accuracy: Measurements are both spread out and far from the true value. This is
undesirable and suggests both random and systematic errors.

The following figure of bullets hitting the target plates explains the concept of accuracy and precision.

Low accuracy
Low precision

High accuracy
Low precision

Low accuracy
High precision

High accuracy
High precision

Come, Let’s Enter Precision Practice Hub
Identify whether the results are precise or accurate.
a) Measurements are precise and not accurate

1. Suppose the true value of a length is 5.00 cm,
and we measure it several times with the
following results:

Trial 1: 5.01 cm, Trial 2: 5.02 cm, Trial 3: 5.00 cm

b
c

)
)

Measurements are accurate and not precise
Measurements are precise and accurate

d) Measurements are neither accurate nor precise
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Answer: Option c c) 25.5 mL d) 25.6 mL
Solution: Answer: b) 25 mL
c) The measurements are precise because they are Solution:

very close to each other. The measurements are
also accurate because they are close to the true
value of 5.00 cm.

2. Given measurements of a liquid's volume:
25.4mlL, 25 mL, 25.5 mL, 25.6 mL

Which measurement has larger deviation?

a) 25.4 mL b) 25 mL

Mean=Sum of measurements/Number of measure
ments= (25.4+25+25.5+25.6)/4=25.375 mL
Deviation=Measured Value—Mean

For 25.4; 25.4—25.375=0.025

For 25: 25—-25.375=0.375 (Larger Deviation)
For 25.5: 25.5—25.375=0.125

For 25.6: 25.6—25.375=0.225

J

-

1. Which of the following best describes
accuracy?

a) The closeness of a measurement to the true value
b) The consistency of repeated measurements

c) The number of significant figures in a measurement
d) The range of possible values in a measurement

2. Precision is best defined as:

a) The closeness of a measurement to the true value
b) The consistency of repeated measurements

c) The smallest unit of measurement

d) The ability to measure something accurately

3. If a set of measurements are very close to
each other but far from the true value, they are:
a) Accurate but not precise

b) Precise but not accurate

c) Both accurate and precise

d) Neither accurate nor precise

4. Which of the following represents high
precision and high accuracy?

a) Measurements that are clustered together and close
to the true value

b) Measurements that are scattered and far from the
true value

c) Measurements that are clustered together but far
from the true value

d) Measurements that are scattered but close to the
true value

5. An instrument that gives the same reading
every time for the same quantity is said to be:
a) Accurate

b) Precise

c) Both accurate and precise

d) Neither accurate nor precise

~

PRACTICE QUESTIONS

6. If an archer hits the same spot on a target
every time but that spot is not the bullseye, their
shots are:

a) Accurate but not precise

b) Precise but not accurate

c) Both accurate and precise

d) Neither accurate nor precise

7. Which of the following is true about
systematic errors?

a) They affect the precision of measurements
b) They affect the accuracy of measurements
c¢) They occur randomly and unpredictably
d) They cannot be corrected by calibration

8. Random errors primarily affect:
a) Accuracy

b) Precision

c) Both accuracy and precision

d) Neither accuracy nor precision

9. An accurate instrument must:

a) Have a high degree of precision

b) Always give the true value of the measured quantity
c) Give measurements that are close to the true value
on average

d) Have no systematic errors

10. Which of the following can improve the
precision of measurements?

a) Calibrating the instrument

b) Taking multiple measurements and averaging them
c¢) Using a more accurate instrument

d) Reducing systematic errors

/
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11. If the mean of a large number of
measurements is close to the true value, the
measurements are considered:

a) Precise but not accurate

b) Accurate but not precise

c) Both accurate and precise

d) Neither accurate nor precise

12. Systematic errors can be minimized by:

a) Increasing the number of measurements

b) Using instruments with higher precision

c) Proper calibration and maintenance of instruments
d) Using the average of multiple measurements

13. A laboratory scale gives a reading of 100.05 g
for a standard weight of 100 g each time it is
used. The scale is:

a) Accurate but not precise

b) Precise but not accurate

c) Both accurate and precise

d) Neither accurate nor precise

14. Which of the following is an example of a
random error?

a) A mis calibrated scale consistently giving readings
that are too high

b) Fluctuations in temperature affecting measurement
readings

c) A clock that runs slow by 5 minutes every hour

d) A voltmeter that always reads 0.2 V too high

15. An experiment with measurements that have
both high accuracy and high precision will result
in:

a) Values that are close to the true value but widely
scattered

b) Values that are close to each other but far from the
true value

c) Values that are close to the true value and closely
clustered

d) Values that are widely scattered and far from the
true value

2-G1°q-H1°q-€1°0-21°q-11°q-01°0-6°q-8°q-L‘qQ-9 Q-G ‘e-}‘q-g‘q-Z‘e-1 suy
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5. ERROR ANALYSIS

Introduction to Error Estimation

Science relies on experiments and measurements to confirm or challenge theories and hypotheses.
However, measurements alone are not meaningful without addressing the processes involved and their
associated uncertainties or errors. In this context, "error" doesn't refer to mistakes but rather to an
estimate of the measurement's precision. Estimating errors in experimental results is crucial before
making any conclusions.

When reporting results, it is standard practice to include both the measured value and its uncertainty.
For instance, if the measured time is reported as (6.5 * 0.2) seconds, it indicates that the time is 6.5
seconds with an uncertainty of 0.2 seconds, meaning the time could range between 6.3 and 6.7 seconds.
The magnitude of both the measured value and its uncertainty depends on the measurement tool and
the method used. To demonstrate this, we will define significant figures and uncertainty using an
example.

line | line 2 line 3
Scale A 5

one significant figure 3em 6cm 9cm

two significant figures 3.3cm 6.5cm 9.0cm

ScaleC 1 2 3

4 5 [ ‘[ 8 b
v oo g oo oo
three significant figures 3.35cm 6.50 cm 9.00 cm

Figure 1. Length measurements of lines 1, 2 and 3 by using rulers with different scales A, B and C.

Imagine three rulers, A, B, and C, each with different scales, are used to measure the lengths of three
lines (1, 2, and 3) in Figure 1. These rulers, as different measurement tools, yield varying results even
when measuring the same object, due to differences in significant figures and uncertainties. Let's explore
why this happens.

Significant Figures and Uncertainty

The numbers derived from measurements are imprecise and subject to error. The precision of a
measurement is represented by significant figures, which include all the digits that are directly obtained
from the measurement. For example, rulers A, B, and C may measure line 1 as 3, 3.3, and 3.35 cm,
respectively, corresponding to 1, 2, and 3 significant figures. More significant figures indicate greater
precision, so 3.35 cm (with 3 significant figures) is more accurate than 3 cm (with only 1 significant
figure). The number of significant figures is independent of the magnitude of the value. For example,
1234, 12.34, and 1.234 all have four significant figures, despite varying magnitudes.

However, the presence of zeros in measurements requires special attention. There are three types of
zeros to consider: leading zeros, trailing zeros, and captive zeros. Leading zeros (e.g., 0.3 or 0.0023) are
not significant, as they only serve to position the decimal point. Trailing zeros in a number with a decimal
point (e.g., 4500.0) are considered significant, while those without a decimal point (e.g., 4500) are not.
Captive zeros, which are between non-zero digits (e.g., 1203.5 or 2.034), are always significant.

To determine significant figures in numbers with zeros, follow these guidelines:
o Leading zeros are not counted.
« Trailing zeros are significant if a decimal point is present.
» Captive zeros are always significant.

For instance, the number 5.294, 0.0003503, and 3.750 X 107 all have four significant figures.
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Scientific notation can also simplify the determination of significant figures. For example, writing 13000
as 1.3 X 10* makes it clear that it has 2 significant figures. Similarly, 0.00034 written as 3.4 X 107 also
has 2 significant figures.

Measurement Examples:

When measuring line 1, using ruler A (with the least precision), the result might be 3 £ 1 cm (1 significant
figure), meaning the length is between 2 and 4 cm. Using ruler B (with finer resolution), the result could
be 3.3 = 0.5 cm (2 significant figures), with the length ranging from 2.8 to 3.8 cm. Finally, with ruler C
(with the highest precision), the measurement would be 3.35 * 0.05 cm (3 significant figures), yielding
arange of 3.3 to 3.4 cm.

Clearly, the choice of measurement tool affects both the measured value and the uncertainty. More
precise instruments yield more significant figures and smaller uncertainties. Therefore, it is beneficial to
use tools with higher precision, though they tend to be more expensive.

For lines 2 and 3, the measurements would be consistent with the respective rulers' resolutions. For
instance, line 2 might be measured as 6 + 1 cm (1 significant figure), 6.5 £ 0.5 cm (2 significant figures),
or 6.50 £ 0.05 cm (3 significant figures). Similarly, line 3 might be measured as 9 = 1 cm, 9.0 £ 0.5 cm,
or 9.00 = 0.05 cm.

Consistency Between Significant Figures and Uncertainty

It's important that the number of significant figures in a measurement matches the uncertainty. For
example, (21.2 * 0.2) is valid, but (21.23556 £ 0.2) is not, as the error term has fewer significant figures
than the measurement itself. In general, uncertainty should only have one or two digits, and anything
more is not acceptable. Therefore, uncertainties like + 0.3 or = 0.12 are fine, but + 0.342 or £ 0.005632
are not.

Mathematical Operations with Significant Figures

When adding or subtracting measurements, the result should be rounded to the least number of decimal
places among the numbers involved. For example, (4.5 + 0.1) cm and (0.3352 £ 0.0002) cm should be
summed as 4.8 cm (rounding to 1 decimal place). Similarly, for multiplication and division, the result
should have the same number of significant figures as the number with the least significant figures in the
calculation.

When performing mixed operations, it’s essential to follow the correct order of operations: parentheses,
exponents, multiplication and division, and finally, addition and subtraction.

For transcendental functions like trigonometric or logarithmic functions, determining significant figures
can be more complicated, but some guidelines are available. The significant figures of a function depend
on the number of significant figures in the input value and the magnitude of the result. For example,
cos(1.3 rad) = 0.26749... should be reported as 0.27, as 2 significant figures are sufficient to distinguish
the change in the value.

Scale Uncertainties in Analog and Digital instruments
Analog Instruments
Analog instruments like rulers and needle meters rely on visual
inspection of the scale markings to estimate measurements. The
uncertainty is typically determined by the smallest division on the
5 6 7 8 scale and is often estimated to be half of the smallest scale division.
Figure 2. Length measurement by an analog ruler. ~ FOT €xample, if you measure a length with an analog ruler and get a
reading of 6.65 cm, the uncertainty might be £0.05 cm. If a magnifier
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is used, the reading could be more precise, such as 6.63 + 0.04 cm, but it still depends on how carefully

the observer reads the scale.

Digital Instruments

F 3¢

Figure 4. Thirect current measurement by a digital multimeter displaying a stable reading.

For example, Like in figure 5, if a digital
multimeter reads a direct current of 0.320 A,
the uncertainty is determined based on the
smallest measurable change. In this case, the
uncertainty is £0.005 A, so the reading is
reported as (0.320 = 0.005) A

o b

Figure 6. Direct current measurement by a digital multimeter displaying a strongly fluctuating

reading.

Figure 5. Direct current measurement by a digital multimeter displaying an unstable reading.

Digital instruments, such as multimeters,
display measurements directly as
numerical values. These instruments
often provide a clearer and more precise

way to report uncertainty like in figure 4.

If the reading fluctuates between 0.32,
0.33, and 0.34 A, the uncertainty would be
10.015 A, and the result would be reported
as (0.33 £ 0.01) A. If the reading fluctuates

too much, the uncertainty may be reported as a larger range, such as (0.35 = 0.05) A.

Estimating Uncertainty in Digital Instruments
In addition to visual inspection of the reading, the specifications of digital instruments can be used to

estimate uncertainty.

Function Range | Resolution Accuracy
200 Q 0.01Q (2% + 5 digits)
2kQ 0.10Q 1(0.2% + 2 digits)
20 kQ 1Q 1(0.2% + 2 digits)
Resistance 200 kQ 10Q 1(0.2% + 2 digits)
2000 kQ 100 Q +(0.5% + 2 digits)
20 MQ 1kQ +(0.5% + 2 digits)
200 mV 10 yv 1(0.1% + 4 digits)
2V 100 pVv 1(0.1% + 4 digits)
20V 1 mV +(0.1% + 4 digits)
DC Voltage 200V 10mV | %(0.1% + 4 digits)
1000V 100 mV 1(0.15% + 4 digits)
2 mA 0.1 pA +(0.5% + 1 digit)
20 mA 1 pA +(0.5% + 1 digit)
DC Current 200 mA 10 yA +(0.5% + 1 digit)
2000 mA 100 pA +(0.5% + 1 digit)
10A 1 mA +(0.75% + 3 digits)
200 mV 10 yv 1(0.5% + 20 digits)
2V 100 pVv 1(0.5% + 20 digits)
AC Voltage (45 Hz - 1 kHz) 20V 1 mV +(0.5% + 20 digits)
200V 10 mV +(0.5% + 20 digits)
750 V 100 mV +(1% + 20 digits)
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For example, a multimeter might provide a range of uncertainties depending on the function (resistance,
DC voltage, etc.) and the measurement range. A resistance measurement on a 200 Q scale with a
resolution of 0.01 Q might show a reading of 71.49 (), and the uncertainty can be calculated as 71.49 X
2% (from the accuracy specification) + 5 dgt (from the resolution), which gives an uncertainty of £1.48
Q. Similarly, DC voltage and AC voltage measurements would have uncertainties calculated based on
their respective specifications.

Important Points:
e Analog Instruments: Scale uncertainty is usually half of the smallest scale division. Accuracy
depends on the observer's care and precision of the instrument.

e Digital Instruments: Uncertainty is based on the smallest possible change in the displayed
reading. This is often more precise and can be determined using the device's specifications.

e Specifications: Manufacturers' specifications provide a way to calculate uncertainty by
considering the resolution and accuracy for different ranges of measurements.

Sources of Errors

Errors in measurements can arise from three primary sources: the instrument, the method of
measurement, and the observed quantity itself. Typically, the largest source of error determines the
uncertainty in the data. There are two main types of uncertainty: statistical (random) errors and
systematic errors.

Statistical (Random) Errors: These errors arise from unpredictable factors that cause fluctuations in
measurements. For instance, if a mechanical stopwatch is aging, it may malfunction, causing the second
hand to move either faster or slower at random intervals. This randomness in its movement makes the
timing uncertainty unpredictable. When measurements are repeated, the values will vary and exhibit a
spread around the average value. This spread is known as random uncertainty. In the following sections,
you'll learn that random errors can be estimated and minimized through repeated measurements.

Systematic Errors: These errors cause a consistent bias in one direction, making the measured value
either consistently higher or lower than the true value. Systematic errors are often difficult to quantify.
For example, if a stopwatch is incorrectly set 5 seconds fast, every measurement will be consistently 5
seconds ahead. This error is not random, and it will persist unless the instrument is corrected. If the
stopwatch is lent to someone else without explaining the error, they will unknowingly experience the
same 5-second discrepancy. The only way to detect this error is by comparing the stopwatch with
another accurate timer.

Another example of a systematic error could occur when using a metal meter stick to measure the length
of a table. If the meter stick has contracted due to a change in temperature, it will always measure the
table as longer than it actually is, regardless of how carefully the measurement is taken. This systematic
error is due to the instrument's material properties being affected by environmental factors (e.g.,
temperature).

Systematic errors are typically caused by imperfections in the equipment, biased observations, or
unaccounted physical effects. Depending on the measurement conditions, an instrument may introduce
random errors in some situations and systematic errors in others, or even both at the same time. Thus,
it is crucial to identify the source of errors to take appropriate action, such as reducing or estimating the
errors.
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For instance, in the “Example of Error Analysis” in Appendix A, a free-fall experiment to determine
gravitational acceleration (g) uses a stopwatch to measure the time it takes for a ball to fall from a height.
The uncertainty in timing is partly due to human reaction time in starting and stopping the stopwatch,
which is a random error. Repeated measurements will yield times that are distributed randomly around
the true value. On the other hand, air resistance always increases the travel time of the ball, making it a
systematic error that consistently affects the results in the same direction.

Statistical (Random) Errors and How to Estimate Them?

Random errors vary with each repetition of a measurement. These fluctuations or instabilities may stem
from the observed phenomenon, the measuring instrument, or even the experimenter's actions, and they
are beyond our control. Random errors can be minimized by performing repeated measurements. By
repeating an experiment many times, we can reduce the impact of random errors and, at the same time,
estimate the "true" value of the measurement and its uncertainty.

Statistics provide a powerful method for estimating the magnitude of random errors. When an
experiment is repeated several times, the resulting measurements, due to random fluctuations, will form
a distribution. This distribution depends on various factors, including the phenomenon being studied and
the measurement tools used. Two key distributions often encountered are the Gaussian and Poisson
distributions.

The Gaussian distribution applies to measured quantities that have a continuous range of possible
values. For example, the length of a table or the gravitational acceleration g are typically described by a
Gaussian distribution because values such as 43.232 cm, 43.345 cm, or 43.653 cm for the table's length,
or 9.818 m/s? 9.806 m/s? or 9.823 m/s? for gravitational acceleration, are continuous measurements.

On the other hand, the Poisson distribution applies to scenarios where only discrete outcomes are
possible. For example, counting the number of vehicles passing by in a minute or counting the number
of gamma particles emitted from a radioactive source in 30 seconds are examples of processes that
follow a Poisson distribution. In these cases, the number of particles or vehicles counted can be 41 or
42, but never a non-integer value like 41.3744. These measurements are discrete and countable.

Gaussian Distribution
Background of Gaussian Distribution
Imagine you are tasked with determining the gravitational acceleration g and you repeat the experiment
n times, obtaining values g;, g,, ..., €. You can then group the measured values into ranges and plot
the frequency of occurrences in a histogram, as shown in Figure 8. This frequency represents the
probability of obtaining a particular measured value, normalized by the total number of events.
In this case, the distribution of measurements follows a Gaussian distribution, which can be expressed
as:

f(x) = . me 20
where 1 is the mean (or expected value) and o is the standard deviation, as illustrated in Figure 9. The
term f(x) dx represents the probability that a measurement will produce a value of x within the interval
x to x + dx. Since the sum of all possible measurements must equal 1, we have the equation:

f_o:of(x) dx=1

For continuous random variables, the expected value and variance are defined as:

(x) = J- ooxf(x) dx(x)
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and
((x— w?) = f (x — W26(x) dx

The mean value p and the standard deviation o can be calculated from the measurements as:
n

_12
H==) X

i=1

n
1
0 = g ) G = w2
i=1

Note that the sample standard deviation is used here instead of the population standard deviation

and

because the experiment is considered a finite sample, not the entire population. Therefore, a correction
factor is applied by using n — 1 in the denominator instead of n.
The Gaussian distribution reaches its maximum at x=p, and this maximum value is:

1
W=7

The distribution decreases as x moves away from p. For values of x one standard deviation away from
the mean, i.e., x = u + o, the value of the probability density function drops by a factor of approximately
0.606531. For x = u + 20, the value drops by a factor of approximately 0.135335. The width of the
Gaussian distribution is characterized by the Full Width at Half Maximum (FWHM), which
represents the width of the distribution at the point where the value has decreased to half of its maximum.
The relationship between the FWHM and the standard deviation is given by:

FWHM = 2v2In2 o = 2.3548
To determine the probability that a measured value x falls within a certain range, we can compute the
probabilities for specific intervals. For example, the probability that x lies within one standard deviation
of the mean is:

Plu—o<x<p+o0)=0.682
This indicates that there is a 68% chance that a measurement will fall within p + o . Similarly, the
probability that x lies within two standard deviations of the mean is:
P(u—20 <x<pu+ 20) =0.954
This means there is a 95% chance that a measurement will fall within p + 2o . Therefore, the standard
deviation o provides a measure of the uncertainty associated with a single measurement.

Estimation of Measured Value and Its Uncertainty

When repeated measurements follow a Gaussian distribution, the "true" value of the measurement is
represented by the mean value, and the uncertainty can be determined from the distribution of those
measured values. A common question arises: Can we express the result as x+ o for repeated
measurements? The answer is no.

Although o describes the spread of individual measurements, it does not represent the uncertainty of the
mean value. To express the uncertainty of the mean correctly, we need to introduce the concept of
standard error.

If we conduct n repeated measurements at different times, and each measurement gives a value x; +
01,Xp * 0y, ..., X, + 0y, the uncertainty of the mean (also known as the standard error) can be calculated
using the following formula:
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o
ox = —

Vvn

where o is the standard deviation of the individual measurements. The measured result of repeated
measurements is then expressed as:

X + 6x
It is important to note that the standard error 6x is much smaller than the uncertainty from a single

measurement due to the \/iﬁ factor.

In practice, even if you only have one set of n measurements, you can still use the standard error formula

to calculate the uncertainty. Therefore, the measurement result is presented as:
o

X=X+—
Vn
Example:
Consider a situation where we measure the mass of a sample 30 times, and the measured mass values
are listed in Table 1. These values are continuous with three significant figures, as provided by an
electronic balance. The uncertainty of each mass value is not specified at this point. We can use the

Gaussian approach to estimate the true value and the uncertainty for the entire set of measurements.

The measured mass values are represented in a

1.09 1.01 1.10 1.14 1.16 . . .

— — " e — histogram (Figure 10), showing the frequency of values
3 03 e oo o0 in different ranges. Since the error sources are primarily
115 106 12 1.08 120 random (due to scale uncertainty, placement of the
1.08 1.07 1.14 L1l 1.05 sample on the balance, etc.), the distribution follows a
1.06 1.12 1.00 1.10 1.07 Gaussian pattern.

Table 1. Measured mass of the sample in kg.

6 For the 30 measurements, the mean mass is:
0 5 30
2 — 1
g 4 Mpean = %Z m; = 1.10 kg
5 3 i=1
é ) From the histogram, it is evident that the data is centered
;cz 1__H H H around this mean mass value of 1.10 kg. The standard
.l 1N R } I:l deviation is calculated as:
1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 20
Mass (kg) 1
Figure 10. The distribution of the measured mass values. Om = 30 — 1 Z(ml - mmean)z = 0.05 kg
i=1

The standard error of the measurements is:

5 Om 0.05 0.01k
m=——=——=20.
V30 V30 8

Thus, the measured result is presented as:

m = (1.10 £ 0.01) kg
This shows the mean value and its associated uncertainty, allowing for a more accurate representation
of the measurement.

Summary of Gaussian Errors
Errors generally indicate a range around the measured value where a new measurement is likely to fall.
The exact likelihood depends on the statistical distribution of the measurements. Typically, a single
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measurement has about a 68% chance of being within one standard deviation of the mean. Similarly, the
mean has roughly a 68% chance of being within one standard error of the true value. This also means
there's a 32% chance that the true value is outside one standard error of the mean. However, this
probability decreases significantly as the range around the mean increases. For instance, there's about a
5% chance that the true value is more than two standard errors away from the mean, and less than a 1%
chance that it is more than three standard errors away.

This interpretation holds only if the measurements are uncorrelated and free of systematic errors. If
instrumental or systematic errors dominate, or if measurements are taken only once or twice, calculating
random errors is pointless. Instead, use the scale uncertainty or the best-guess systematic error. When
deriving results from multiple measurements, it's crucial to avoid misestimating experimental errors.

It's important to know when to use standard deviation versus standard error. Standard deviation shows
the distribution of individual data points around the mean, while standard error indicates the precision
of the mean estimate. If you're interested in the spread and variability of data from a single measurement,
use standard deviation. For understanding the precision of the true value or comparing differences
between means, use standard error.

Key points to remember:

Standard deviation measures how much the values in a dataset differ from each other.

Standard error measures how accurately you know the population mean.

Standard error decreases as sample size increases because larger samples tend to give a mean closer
to the true population mean.

Standard deviation does not change predictably with more data; it measures data scattering, which
remains consistent regardless of sample size.

Poisson Distribution

Background of Poisson Distribution

Radioactive decay is a process where unstable atoms transform into another element or isotope by
emitting photons, electrons, or alpha particles. This decay is an example of a Poisson process, where
events are randomly distributed in time, space, or other variables. The detection of particles emitted
from a radioactive substance is random and statistically independent, meaning that counting particles
over equal time intervals will likely yield different results each time. These counts are subject to statistical
fluctuations, and if the experiment is repeated many times, the observed values will follow a distribution
based on the number of atoms that can decay and their natural decay rates.

Suppose a sample contains n radioactive nuclei with a known probability of decay p (the decay rate).
The probability of recording k counts during a given time interval is given by the Binomial distribution:

n! ~
Ha_oP a-p

However, when the number of radioactive nuclei n is much larger than the recorded counts k, and the
probability of decay p is small (n > k and p « 1), the Poisson distribution is more suitable. The Poisson
distribution is expressed as:

P(n,p,k) =

ke

Pl =—7—
where 1 = np. Here, pu is a constant value representing the mean number of counts and is given by the
product of n and p.

An example of the Poisson distribution is illustrated in Figure 11.
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04 When both the number of nuclei n and the recorded
0.35 counts k are large, the Poisson distribution
03 approaches a Gaussian distribution, as shown in
@ 0622 Figure 12:
2 1 _ (k=2
0.15 P(k) = e 202
0.1 2102
0.05 4 where 62 = . The Gaussian distribution is used for
0 I_' continuous random variables, unlike the discrete
o T 2 3 ;( > 078 variables in Poisson and Binomial distributions. This

Figure 11. A Poisson distribution when 1 >>k and p<<l.

calculate probabilities.
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Figure 12, When » and k arc large, the distribution is approaching to a Gaussian distribution,

L T T TeT

transition to a Gaussian distribution allows the use of
more mathematical tools, such as integration, to

This shift from a Poisson to a Gaussian distribution
demonstrates how large datasets enable the
application of continuous distribution models and
more advanced mathematical methods.

Estimation of Measured Value and Its Uncertainty

Since any observation can yield counts ranging fr

om zero to any positive integer (k = 0, 1, 2, 3, ...), the

sum of all probabilities P(k, ) for a given py must equal one:

i P(k,p) = 1.
k=0

For discrete random variables, the expected value (mean) and variance are defined as ), ); x;P(x;) and
¥ ¥i(x; — w?P(x;), respectively. For a Poisson distribution, the expected value (mean) y is given by:

h= ko kP(k ) = 1.
The variance, which is equal to 62, is:

0 = > (k= W?P(, 1) = i
k=0

Thus, the standard deviation o is:
o

Assuming most measurements are close to the

S

mean value (i.e., k is near p), the error of a single

measurement can be estimated as 8k = Vk ~ /j.. For example, if 100 particles are counted in 30
seconds, the uncertainty is ¥100 = 10, so the resultis 100 + 10 counts.

An example: counting gamma particles produced
with results shown in Table

from the background over 30 seconds for 1000 trials,
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N 7 34 | 84 [ 140 | 176 | 176 [ 146 | 104 | 65 | 36 18 8 4 1 1 0

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | =15

Table 2. The frequency of occurrence f for different counts £.

Here, f is the frequency of occurrence, and k are discrete counts. The sum of all f values gives 1000
measurements, and therefore:

particle number (k)

0.204 P k —
0.18 (k) 1000’
0164 co
0.14 z P(k) =
0124
T 0.0 k=0
05_" 0.0 A histogram (Figure 13) shows the distribution. The
0.06 mean value p\muy is calculated as:
gg; u=YKP(k) =4.997 = 5 counts, close to the peak
0.00 center. The variance is:
P20 2 4 6 8 10 12 14 16 o’ = Z(Xi — w?2P(x;) =5.013 ~ 5,
i

Figure 13. The distribution for different particle count numbers k. Conﬁrming o’ = n and that the data follows a typlcal
Poisson distribution. The standard deviation is:

8k = /u = 2.23 = 2 counts.
Thus, the result can be presented as 5 + 2 counts. Often, instead of 1000 measurements, a single longer
measurement (e.g., 600 seconds) is taken, with the standard deviation given by: 8k = Vk.

Systematic Errors

Systematic errors are consistent inaccuracies in measurements caused by factors that have not been
properly considered or calibrated. Unlike random errors, systematic errors cannot be reduced by
increasing the number of observations. They are more challenging to identify and quantify. Although
there is no standard method for calculating systematic errors, they can often be minimized or identified
through proper experimental techniques. These errors can be mitigated by using different instruments
to cross-check results, having another experimenter repeat the experiment, or improving experimental
conditions.

An example of considering systematic errors is the digital multimeter. According to its specifications, the
accuracy is (0.025% + 2), where 0.025% is the percentage error relative to the measured value and 2 is
the accuracy of the last digit. For a measurement of 2.346 V, the actual voltage is (2.346 * 0.0006 *
0.002) V. The first error is the systematic error due to the instrument's gain and offset inaccuracies, while
the second is the random error due to scale uncertainty. In precise experiments, these errors should be
listed separately because they may contribute differently to the overall experimental errors.

Systematic errors are categorized into two types: instrumentation and environmental. Instrumentation
errors can usually be reduced by using higher quality instruments and are easier to estimate.
Environmental errors, such as those caused by air friction or Earth's magnetic field, are harder to reduce
or estimate and may require redesigning the experiment to mitigate their effects. Computer simulations
are often necessary to estimate environmental impacts on experimental results and errors.

Here are some common techniques to minimize systematic errors:

Calibration: Before using any instrument, calibrate it by checking its zero point and taking
measurements with a standard reference source.
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Comparison with Scale Uncertainties: Compare the error from scale uncertainties with the standard
deviation of the measured data. If the standard deviation is larger, it indicates the presence of significant
systematic errors.

Independent Experiment Comparison: Compare your results with those from another independent
experiment. Discrepancies suggest that at least one experiment has systematic errors.

When conducting experiments, always check the instrument's zeroing before use and compare the
results with accepted values. Discuss any potential sources of systematic errors to ensure the accuracy
and reliability of your measurements.

Precision vs Accuracy

In scientific experiments, we generally conduct two types. In one type, we aim to verify an existing
theory or quantity, such as the gravitational constant. In the other, the theory or quantity is unknown,
and our task is to confirm it through research.

For the first type, we focus on accuracy vs. precision. Let's consider an example: Three groups of
students attempt to measure the gravitational constant, which is known to be 9.81 m/s? After their
measurements, all three groups report identical mean values but with different standard errors. We can
summarize the results in three cases:

Case 1

g =9.75+ 0.09 m/s”

The difference between the experimental result and the expected value is 0.06 m/s? with a ratio of
difference/error = 0.06/0.09, which is less than 1. Therefore, the result is consistent with the expected
value.

Case 2

g =9.75+ 0.01m/s”

The difference remains 0.06 m/s?, but the ratio of 0.06/0.01 is much greater than 1. Despite the small
error margin, the result is not consistent with the expected value.

Case 3

g =9.75+ 0.04m/s*

Here, the difference is still 0.06 m/s?, but the ratio of 0.06/0.04 is between 1 and 4. This result is
inconclusive, suggesting the need for further measurements.

Accuracy refers to how close an experimental result is to the "true" expected value, while precision
indicates the consistency of the results, regardless of how close they are to the true value. Thus, Case 2
is more precise than Case 1, likely due to better equipment, though it may not be calibrated correctly.
Conversely, Case 1 is more accurate. Ideally, results should be both accurate and precise.

If the ratio of difference to error is consistently greater than 1 across various experiments, the theory or
the experimental design may be flawed, necessitating a review of both to explain the discrepancy.
Observing such discrepancies can lead to new laws or theories in physics.

In the second type of experiment, where there is no reference to a true value, precision is the main
concern. The best result sets a standard until more precise measurements are available. Accuracy is
difficult to determine since we don't always know the expected answer, and in scientific research, we
rarely know what the answer should be.
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In undergraduate physics labs, students typically focus on the first type, studying proven theories or
known quantities. Deviations from expected values suggest systematic errors in the experiments,
prompting students to identify error sources and improve their methods.

In contrast, research scientists often focus on the second type, where theories or quantities are not yet
fully understood.

Propagation of Errors
Often, the physical quantity of interest y is determined as a function f of several measurable quantities
x; (where i=1,2,...,m). Each x; has a standard error §x;, and each contributes to the overall erroriny.

For instance, in a free-fall experiment, we aim to find g by measuring the distance d and time t
independently, then using the equation g = 2d/t?. Suppose d = (1.095%+ 0.001)m and t=
(0.472 + 0.002)sec. The calculated g would be g =2 X 1.095/0.472? =9.83m/s? (with three
significant figures). But what about its error?

This section explains how to determine the standard error of a calculated result from the standard errors
of the measurements.

The Basic Formula of Error Propagation
When the measurements x; are uncorrelated, the standard error §y can be estimated using the formula:

m

o= (& oe)

i=1

It is important to note that x; must all be uncorrelated for this equation to be valid. This typically holds
true when measurements are taken by different apparatuses, each with independent measurement
errors. Do not use this formula if one of the quantities is calculated from the others, as they would not
be independent or uncorrelated in such cases.

Some Useful Corollaries
From the basic formula for error propagation, we can derive the results for common functional
relationships.
Addition: When quantities are added:
y=x1+x,+x3+ -
The standard error is:

Sy = \/Sxf + 8x3 + x5 + ...

Subtraction: When quantities are subtracted:

Yy =X =Xz
Sy = ’(lez + 82

The standard error is:
Multiplication: When quantities are multiplied:

y = xle.X3 .
The standard error is:
5 Sx\>  /6x,\°  [6x5\°
2o ey
y X1 X2 X3
X1

Division: When quantities are divided: y = "
2
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The standard error is:

8y _ (&)2 N (%)2
y X1 X2
With a constant: When there is a linear combination of variables with constants c;, ¢y, ...:

Y = C1X1 + CaXxp + -
The standard error is:

5y = \/clz5xf + c36x5 + -
Power dependence: When quantities have a power dependence:
y = x;1 %57
The standard error is:

) 5x1\° 5x7\°
y X1 X2

By applying these rules of error propagation to the earlier g measurement example, the final result
becomes:

g = 9.83 +0.08m/s?

Graphical Analysis

In modern physics experiments, most calculations and data analysis are done using computers.
However, visualizing the relationships between measurements through simple plots remains a valuable
tool. Often, mistakes can be quickly identified by inspecting graphs early in the experimental process,
allowing adjustments to be made before too much time is spent. Therefore, understanding basic graphing
techniques and methods for extracting information from graphs is important. After that, we will discuss
the principle of using computers for curve fitting to determine important parameters.

Conversion to Linear Graphs

Many experiments aim to verify existing theories, for which physical equations are already known. The
way we plot the data can simplify the data analysis process. For instance, in a free-fall experiment, to
determine the gravitational acceleration g using the equation:

d= % gt?
where t is the time it takes for the ball to travel a distance d is the independent variable, and t is the
dependent variable. Instead of plotting t against d to extract g, it’s easier to plot t?against d. This
approach makes it possible to determine g from the slope of the linear plot without needing to fit a curve.
More importantly, such a linear plot allows for the immediate identification of any discrepancies before

further data analysis.
Another example is the resistance

o ] measurement of a semiconductor at different
e . - temperatures T. The resistance follows an
S0l 2 s . . . .

g 200 . g " exponential relationship given by:
”3150- " . 8 _-- R:AebT
£ 100 " . . £ o .
51 e . where A and b are constants. To determine
280 300 310 320 320 340 350 0.0028 0.0030 0.0032 0.0034 these parameters’ lt’S eaSIGI' to plot ln R agalnSt
temperature (C) 1ftemperature
Figure. 14. Plots of resistance against temperature of a semiconductor in two ways. 1/T This will Yleld a Stralght hne: as shown in

Figure 14, from which A and b can be directly extracted from the y-intercept and the slope.
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Data Fitting

In physics experiments, it is common to measure a set of n data points(x;,y;), where x; is the
independent variable and y;is the dependent variable. The goal is to fit these data points with a smooth
function y = f(x; a, b, c), where a, b, and c are the constant parameters to be determined. The function
could represent a linear straight line (the simplest case), a higher-order polynomial, or a more
complicated form based on theoretical background.

The fitting process allows us to compare experimental data with theoretical predictions and determine
the best values for the parameters a, b, and c. For instance, in Figure 15, the black dots represent
experimental data points, and the red solid line is the best-fitting curve.

Since curve fitting often involves complex and time-consuming calculations, it is generally not done
manually. Many software tools, such as Microsoft Excel, Origin Lab, and MATLAB, offer built-in
functions to perform curve fitting. In PHYS1712 lectures, you will be introduced to using Excel's
Trendline and Solver for this purpose.

0.5

Before applying these tools, it's useful to
understand the basic principles of curve
fitting. Two common methods for fitting data
are least squares and chi-square fitting.
The choice between these methods depends
on whether the uncertainty in the data is
considered.

-0.25

Figure 15. An example of curve fitling in which the black dols arc the experimental data and the red
solid linc is the “best™ fitted curve.

Least-Squares Fitting
Basics of Least-Squares Fitting
The definition of the "best" fit is not always straightforward, and sometimes different sets of parameters
(a, b, c, ...) can produce curves that appear very close to the data points. Therefore, a criterion is needed
to ensure that the data points and the fitting function are as close as possible. The most commonly used
method, which is nearly always adopted, is least squares fitting. In this method, we minimize the sum
of the squares of the differences between the observed y-values (y;) and the function y = f(x) evaluated

at X;.

Assume we try to fit a function y = f(x;a,b,c)to n experimentally determined points

(x1,y1), (x2,¥3), ..., (xn, V). The goal is to determine the physical parameters a, b, c, etc., for the best

fit. To do this, we make the following assumptions:

o x;(fori=1,2,..,n) are the pre-selected values of the independent variable x and are measured
accurately with negligible errors. In other words, there are no uncertainties in x.

e The deviations of y;(for i = 1,2, ...,n) from the best curve follow a normal distribution.

e All y;'s are measured with approximately the same level of accuracy.

Under these assumptions, the most likely curve satisfies the least-squares criterion. That is, the
parameters a, b, c, ... should be chosen to minimize the mean-square deviation S of the y;'s from the
curve:

n
1
S@b,) =~ > [y = fxia b,
i=1
To minimize this sum, we set the partial derivatives of S with respect to each parameter equal to zero:
s _aS 09§
da 0b dc

38



B 1 Professor Academy

In most cases, except for very pathological situations, the least-squares criterion is sufficient to determine
the parameters a, b, c, ... .
It’s important to note that Equation minimizes the

(a) ' (b) ’ difference in the y-direction only, without accounting

’ I’/ ,:\" for any potential errors in the x-direction. This is

T’/" 1 "\,»”\ shown in Figure 16(a), where the data points are
‘/1, ,/\:' represented by dots, and the dashed line is the fitting
function. On the other hand, the minimization can

also be done in the direction perpendicular to the
fitting function, as shown in Figure 16(b), which
involves calculating differences in both the x- and y-directions.

Figure 16. Vertical (a) and perpendicular (b) minimizations.

Types of Fitting Functions
The fitting function y=f(x) can take various forms depending on its theoretical background. Common
types include:
o Linear equation: y=a+bx , where a is the y-intercept and b is the slope.
« Polynomial equation: For example, an m™ order polynomial y = ay + a;x + a,x? + -+ +
anx™, where ay, a4, ..., ayare constants.
 Exponential and logarithmic forms: Such as y = ae?®,y = a In(x), or other non-linear forms.

Linear models are relatively simple because the constant parameters are always unique, making them
easy to solve directly. However, for nonlinear models, the resulting equations are often nonlinear as well,
meaning they may have multiple solutions or no solutions at all. This can make solving for the parameters
less straightforward. In such cases, as discussed in it's often advantageous to transform the nonlinear
model into a linear one by changing the variables before fitting. Even if such a transformation is not
possible, modern mathematical software is powerful enough to handle nonlinear curve fitting.

Least-Squares Fit for a Straight Line

In this section, we apply the least-squares fitting criterion to fit a straight line to a set of data points. The

goal is to find the y-intercept a and the slope b of the line, which is described by the equation:

y=a+ bx
Given 6 data points (x;,y;) fori = 1,2,...,6, we
want to determine the values of a and b that
minimize the sum of the squared differences

y (dependent)

between the observed y; values and the
corresponding y values predicted by the line.

y-intercept Xi

x (independent) Step-by-Step Derivation
Figure 17. Least-squares fit of the data points (blue dots) to a straight line (black solid line). Deﬁne the Sum Of Squared Differences (S)
The sum of squared differences between the observed and predicted y-values is:

5= (= (a+bw)’
i=1

For n=6, we minimize this sum with respect to a and b.

Minimization with Respect to a
To minimize S, we take the partial derivative of S with respect to a and set it equal to zero:
s
32" 0
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This leads to:

Simplifying:

Which gives the equation:

This simplifies to:
na+bX=Y
where:
« X=301x; Y=Yy

Minimization with Respect to b
Next, we take the partial derivative of S with respect to b and set it equal to zero:

s 0
ob
This leads to:
6
in(%' —a—bx;) =0
i=1
Simplifying:

6 6 6
inyl- = ale- + bel-z
i=1 i=1 i=1

This gives the equation:
aX +bU =27

where:
e U= Zi6=1xi2; Z = Z?:lxiyi

Solving the System of Equations
The system of equations we now have is:
na+bX=YaX+bU=17
This is a system of two linear equations in the unknowns a and b. The solution can be found by solving
this system, which gives:
Uy —-Xxz _nZ-—XY

¢ T —x2 Tl — X2

These equations can be used to find the best-fit parameters a and b.

and

Special Cases
Straight Line Through the Origin: If we assume the line passes through the origin (i.e., a=0), the
equation simplifies to:

In this case, the slope is given by:
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Zero Slope: If the slope b = 0, this means the best-fit line is a horizontal line. In this case, the y-intercept
a is simply the mean of the y;values:

Y
a=-
n

Check for Consistency

After solving for a and b, we can verify the correctness of the solution by checking if the sum of the
residuals (the differences between the observed y; values and the predicted values a + bx;) is zero. This
check is given by the condition:

n
Z(}’i —a—bx;)=0
i=1

This provides a simple validation of the computations.

Errors in Least-Squares Fit

In least-squares fitting, it's crucial to understand how errors propagate when determining the parameters
a (y-intercept) and b (slope) of the best-fit line. The errors in b and a are related to the uncertainty in the
observed data points y;.

Error Propagation for the Slope b
The error in the slope b, denoted as b, can be derived using the propagation of error. The formula is:

b= (L)
- ayl yi
Given the least-squares solution for b (Equation), we have:

LG =5

éb
vnU — X?
Where:
e ¥, = a + bx; is the predicted value of y;for each x;.
e U=3Ixf
o X =Xil1x

Thus, the standard deviation in b, denoted as 6b, depends on the spread of the data points (their
deviation from the best-fit line) and the values of X and U.
The equation for the error in b can also be simplified as:

Vn 8y
VnU — X2

Where 0y is the standard deviation of y; values from the best-fit line.

6b =

Error Propagation for the Intercept a
Similarly, the error in the intercept a, denoted as 8a, can be expressed as:

JU b8y?
VnU — X2

This expression indicates that the error in a depends on the spread of the data points as well as the

da =

values of X and U.

Standard Deviation of y;
The standard deviation of the y; values from the best-fit line can be calculated as:
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1
n—2

8y

n
Z(}’i —a — bx;)?
i=1

This reflects how much the individual data points deviate from the fitted line. The factor n — 2 in the

denominator accounts for the degrees of freedom, as two parameters (a and b) have been fitted.

-

PRACTICE QUESTIONS

~

1. Which of the following is the equation for a
Gaussian distribution?
_ (x—u)z)

8) f(x) = ;= exp

202
b) £(x) = =exp (- L)
0 f() = =exp (- 1)
A () = =z exp (- 52)

2. In a Gaussian distribution, what percentage of
the data falls within one standard deviation
from the mean?

a) 68% b) 95%

c) 99.7% d) 50%

3. The central limit theorem states that the sum
of a large number of small, independent random
errors will form a:

a) Uniform distribution
c¢) Gaussian distribution

b) Binomial distribution
d) Poisson distribution

4. If the error in a measurement is normally
distributed with a mean of 0 and a standard
deviation of ¢, what is the probability that the
error lies with in o + ¢?
a) 50% b) 68%

c) 95% d) 99%

5. The Poisson distribution is most appropriate
for modeling:

a) The distribution of heights in a population

b) The number of defects in a manufactured item

c) The time between arrivals of customers at a store
d) The number of photons detected by a
photomultiplier tube

6. In a Poisson distribution, if the average
number of occurrences is A, what is the variance
of the distribution?
a) VA b) A2

c) A d)

SR

7. Which type of graph is most suitable for
visualizing the distribution of a dataset?

"

e-Z1q-11°q-01‘e-60-8°q-L‘0-9‘P-G‘q-}‘d-g‘@-Z‘e-1 suy

a) Scatter plot
c) Line graph

b) Histogram
d) Bar chart

8. In a linear regression analysis, the slope of the
best-fit line represents:

a) The correlation between the variables

b) The intercept on the y-axis

c) The rate of change of the dependent variable with
respect to the independent variable

d) The variance of the data

9. Which of the following represents the formula
for the uncertainty in the mean value of a set of
measurements?

@@=% b) oz = >
c)ax=\/§ d)a,g=%

10.If z = x -y, and the errors in x and y are o,
and o, respectively, the propagated error o, is
given by:

0z 2 0z 2
0 0c= 2] + (o)

9 2 9 2
b) 0, = J(Z) o2 +(Z) o

0z 0z
c) o, = \/(aax) + (503,)

0z 0z

d) o, = (5:0x) + (529)
11. The standard deviation of a dataset
measures:
a) The average value of the dataset
b) The spread or dispersion of the dataset

¢) The sum of the squared deviations from the mean
d) The correlation between two variables

12. Given the dataset {2, 4, 4, 4, 5, 5, 7, 9}, what
is the standard deviation?
a) 2 b) 3

c) 4 d) 5

)
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