

Unit I — Group Theory

Objectives: Understand the fundamental algebraic structure “Group”; study Groups – Examples – Cyclic Groups – Permutation Groups – Lagrange’s theorem – Normal subgroups – Homomorphism – Cayley’s theorem – Cauchy’s theorem – Sylow’s theorems – Finite Abelian Groups.

Concepts Overview

Concept	Description	Note	Example
Group	Non-empty set with a binary operation satisfying closure, associativity, identity, and inverse properties.	Algebraic structure	$(\mathbb{Z}, +)$, (\mathbb{R}^*, \cdot)
Subgroup	Non-empty subset closed under operation and inverses.	Contains identity	$2\mathbb{Z}$ in \mathbb{Z}
Cyclic Group	Generated by a single element a .	Every element $= a^k, k \in \mathbb{N}$	$(\mathbb{Z}_n, +)$
Permutation Group	Set of all bijections on $\{1, 2, \dots, n\}$.	Order $= n!$	S_3, S_4
Normal Subgroup	$aN = Na$ for all $a \in G$.	Needed for quotient group	$A_n \trianglelefteq S_n$
Quotient Group	Set of cosets G/N when $N \trianglelefteq G$.	Operation $(aN)(bN) = abN$	$\mathbb{Z}/2\mathbb{Z}$
Homomorphism	Map preserving operation.	$\ker f$ normal, $\text{Im } f$ subgroup	$\phi : \mathbb{Z} \rightarrow \mathbb{Z}_n, \phi(k) = k \bmod n$
Isomorphism	Bijective homomorphism.	Structure preserving	$\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$
Automorphism	Isomorphism from $G \rightarrow G$.	Symmetry of structure	In \mathbb{Z}_n , each automorphism is $x \mapsto kx$ with $\gcd(k, n) = 1$

Important Examples of Groups

No.	Group	Description	Cyclic	Abelian	Normal Subgroups	Abelian Subgroups	Cyclic Subgroups	Key Point
1	$(\mathbb{Z}, +)$	Integers under addition	✓	✓	All $n\mathbb{Z}$	All	All	Infinite cyclic
2	\mathbb{Z}_n	Integers mod n	✓	✓	All	All	All	Finite cyclic
3	S_3	Permutations of 3 elements	—	—	A_3	A_3	$\langle(12)\rangle, \langle(123)\rangle$	Smallest non-abelian
4	D_4	Symmetries of square	—	—	$\langle r^2 \rangle$	Some	$\langle r \rangle, \langle r^2 \rangle$	Dihedral (order 8)
5	Q_8	Quaternion group	—	—	$\langle -1 \rangle$	$\langle -1 \rangle, \langle i \rangle$	$\langle i \rangle, \langle j \rangle, \langle k \rangle$	All subgroups normal
6	V_4	Klein four group	—	✓	All	All	All	Not cyclic, abelian
7	A_4	Even permutations of 4 elements	—	—	V_4	Few	Some	Order 12
8	$\mathbb{Z}_2 \times \mathbb{Z}_3$	Direct product	✓	✓	All	All	All	$\cong \mathbb{Z}_6$
9	$GL(n, \mathbb{R})$	Invertible $n \times n$ matrices	—	—	Infinitely many	Infinitely many	Infinitely many	$SL_n(\mathbb{R}) \trianglelefteq GL_n^+(\mathbb{R}) \trianglelefteq GL_n(\mathbb{R})$
10	$SL(n, \mathbb{R})$	$n \times n$ real matrices with $\det(A) = 1$	—	—	Infinitely many	Infinitely many	Infinitely many	Subgroup of $GL(n, \mathbb{R})$
11	D_n	Symmetry group of regular n -gon	—	—	$\langle r^k \rangle$	Some	Some	Non-abelian for $n > 2$
12	$(\mathbb{R}, +)$	All real numbers under addition	✓	✓	All subgroups of the form $r\mathbb{Z}$ ($r \in \mathbb{R}$)	All	All	No proper finite subgroups
13	C_n	Complex n th roots of unity	✓	✓	All	All	All	$\langle e^{2\pi i/n} \rangle$, cyclic of order n

Legend: ✓ = yes; “—” = no/limited. $\langle x \rangle$ is the cyclic subgroup generated by x .

Named Theorems

- **Lagrange's Theorem:** If G is a finite group and H is a subgroup of G , then the order of H divides the order of G . In particular, the order of every element of G divides $|G|$.
- **Cauchy's Theorem:** If a prime p divides the order of a finite group G , then G contains an element of order p .
- **First Isomorphism Theorem:** If $\phi : G \rightarrow H$ is a homomorphism, then $G/\text{Ker } \phi \cong \text{Im } \phi$.
- **Second Isomorphism Theorem:** If A is a subgroup and N a normal subgroup of G , then $AN/N \cong A/(A \cap N)$.
- **Third Isomorphism Theorem:** If N and K are normal subgroups of G with $K \subseteq N$, then $(G/K)/(N/K) \cong G/N$.
- **Cayley's Theorem:** Every group G is isomorphic to a subgroup of the symmetric group on G .
- **First Sylow Theorem:** If p^k divides $|G|$, then G has a subgroup of order p^k .
- **Second Sylow Theorem:** Any two Sylow p -subgroups of G are conjugate in G .
- **Third Sylow Theorem:** The number n_p of Sylow p -subgroups divides $|G|$ and satisfies $n_p \equiv 1 \pmod{p}$
- **Structure Theorem for Finite Abelian Groups:** Every finite abelian group is a direct product of cyclic groups of prime-power order.

Key Theorems

- Subgroups of a cyclic (Abelian) group are cyclic (Abelian); number of elements of order d in a cyclic group is $\varphi(d)$. Every cyclic group is Abelian.
- $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic $\iff \text{gcd}(m, n) = 1$; then $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$.
- For $|G| = p$ (prime), G is cyclic; V_4 is the smallest non cyclic group. S_3 is the smallest non-abelian group.
- If $a \in$ a group G & $\text{ord}(a) = m$, then $\text{ord}(a^k) = \frac{m}{\text{gcd}(m, k)}$. If H and K are finite subgroups of a group G , then $|HK| = \frac{|H||K|}{|H \cap K|}$.
- In any group, the intersection of normal subgroups is normal, but their union need not be a subgroup.
- If a group has exactly one subgroup of a given order, that subgroup is always normal in G .