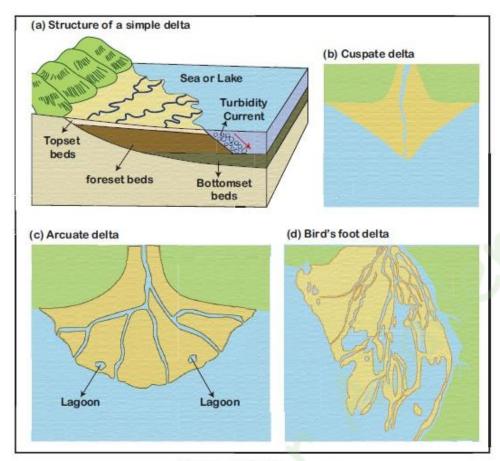
# Delta

Delta is a depositional feature of a river formed at the mouth of the river.


#### **Formation of Delta**

- A river moves more slowly as it nears its mouth, or end. This
  causes sediment, solid material carried downstream by currents, to
  fall to the river bottom.
- The slowing velocity of the river and the build-up of sediment allows the river to break from its single channel as it nears its mouth.

## **Factors Affecting Delta Formation**

- Climatic conditions
- Geologic setting
- Sediment sources in the drainage basin
- Tectonic stability
- River slope and flooding characteristics
- Intensities of depositional and erosional processes
- Tidal range and offshore energy conditions

## **Types of Deltas**



Types of Delta

#### Arcuate Delta:

It is fan-shaped Delta. A bowed or curved Delta with the convex margin facing the body of water.

Example: Nile, Ganges.

### · Bird's foot Delta:

Bird foot's claw. This shape is created when the waves are weak and the river flow is stronger. They are formed due to deposition of finer materials by river water.

Example: Mississippi, USA.

## Cuspate Delta:

It is formed where sediments are deposited onto a straight shoreline with


strong waves. The waves push the sediments to spread outwardly creating the tooth-like shape.

**Example:** Tiber River of Italy.

#### • Estuarine Delta:

It is formed at the mouth of submerged rivers depositing down the sides of the estuary.

**Example:** Seine River of France, Deltas of Narmada and Tapi (Tapti) rivers of India.



## Lacustrine Delta:

It is formed when a river flows into a lake.

Example: Lough Leanne river Delta, Ireland.

#### Truncated Delta:

Sea waves and ocean currents modify and even destroy Deltas deposited by the river through their erosional work. Thus, eroded and dissected Deltas are called truncated Deltas.

# **Loess Deposits**

- Loess is a fine-grained, wind-blown sediment mainly composed of silt-sized particles (0.002–0.05 mm) derived from glacial and desert regions.
- The Chinese Loess Plateau (Huangtu Plateau) is the largest and thickest loess deposit on Earth.



- Loess occurs as thin blankets and hill slopes along the Thar
   Desert margins.
- Pleistocene loess deposits found around Srinagar, Karewa formations, and Jhelum valley.
- The Indus valley and Leh region show thick loessic silts interbedded with glacial and fluvial materials.

# According to Recent Economic Survey 2024–25

Following are the **top three states** in production of important crops

## I. Foodgrains

#### **Rice**

- 1 Telangana
- 2 Uttar Pradesh
- West Bengal

#### Wheat

- Uttar Pradesh
- Madhya Pradesh
- Punjab

#### Maize

- Karnataka
- 2 Bihar
- Madhya Pradesh

### **Total Nutri / Coarse Cereals**

- Rajasthan
- 2 Karnataka
- Madhya Pradesh

### Tur

Karnataka

- 2 Maharashtra
- Uttar Pradesh

### **Gram**

- Madhya Pradesh
- Maharashtra
- Rajasthan

### **Total Pulses**

- Madhya Pradesh
- Maharashtra
- Rajasthan

## **Total Foodgrains**

- 1 Uttar Pradesh
- Madhya Pradesh
- Punjab

## II. Oilseeds

## Groundnut

- Gujarat
- Rajasthan
- Madhya Pradesh

## Rapeseed & Mustard

- Rajasthan
- 2 Uttar Pradesh
- Madhya Pradesh

# Soyabean

- Madhya Pradesh
- 2 Maharashtra
- Rajasthan

### Sunflower

- Karnataka
- 2 Haryana
- Odisha

## **Total Oilseeds**

- Rajasthan
- Madhya Pradesh
- Gujarat

## **Sugarcane**

- Uttar Pradesh
- 2 Maharashtra
- Karnataka

## Cotton

- 1 Gujarat
- 2 Maharashtra
- Telangana

## **Jute & Mesta**

- West Bengal
- Bihar
- 3 Assam

# Structure of the Atmosphere – Summary

#### 1. General Features

- 50% of atmospheric gases and pressure phenomena lie below 5.6 km, and 97% within 29 km.
- The atmosphere is divided into layers based on:
  - (i) Thermal characteristics
  - (ii) Chemical composition

### **A.** Thermal Characteristics

## Five main thermal layers (S. Pettersson):

- 1. Troposphere
- 2. Stratosphere
- 3. Ozonosphere (included within Stratosphere)
- 4. Ionosphere
- 5. Exosphere

# (1) Troposphere

- Lowest layer; extends up to 8 km at poles and 17 km at equator.
- Contains 75 % of total atmospheric gases, including water vapour, dust, aerosols.
- Known as the "turbulent" or "convective" layer due to active mixing and weather processes.

- All weather phenomena (clouds, rainfall, storms, lightning, etc.)
   occur here.
- Temperature decreases with height at an average lapse rate of 6.5
   °C/km.
- The upper limit is the tropopause.

## **Tropopause:**

- Boundary separating troposphere and stratosphere.
- Height: ~17 km at equator, 9–10 km at poles.
- Temperature: ~-70 °C at equator, -60 °C at mid-latitudes, -58
   °C at poles.
- Pressure: ~100 mb (equator), 250 mb (poles).
- Shows seasonal and latitudinal variation.
- Marks the level "where mixing stops".
- Jet streams and tropical cyclones can disturb its continuity.

## (2) Stratosphere

- Lies above the tropopause, extending from 17 km to about 50 km.
- Temperature increases with height due to ozone absorption of UV radiation.
- Lower part (15–35 km) is called the ozonosphere, with maximum ozone concentration at ~22 km.
- Stable air and absence of weather make it suitable for aircraft flight.

- Stratopause is the upper boundary (~50 km).
- Clouds: "Mother-of-pearl" or nacreous clouds occasionally form.

### (3) Mesosphere

- Extends from 50 km to 80 km.
- Temperature decreases with height (as low as -100 °C to -135 °C).
- The coldest layer of the atmosphere.
- Meteors burn in this layer.
- The upper boundary is the mesopause (~80–90 km).
- Noctilucent clouds (formed by condensation of meteoric dust) occur here.

## (4) Thermosphere

- Above mesopause, extends ~80 km to 640 km.
- Temperature rises sharply with height (up to ~1700 °C or more).
- Air is extremely thin; ordinary thermometers cannot measure temperature.
- · Divided into two sublayers:
  - Ionosphere (80–640 km) contains ionized gases; reflects radio waves.

- Layers: D, E, F<sub>1</sub>, F<sub>2</sub> (Kennelly-Heaviside and Appleton layers).
- Responsible for radio communication and auroras.
- Exosphere (beyond 640 km) outermost layer; air extremely rarefied.
  - Temperature up to 5568 °C; gases escape into space.
  - Contains hydrogen and helium;
  - Includes Van Allen radiation belts and auroras (aurora borealis, aurora australis).

### B. Chemical Characteristics

- 1. Homosphere (0-90 km)
  - Uniform chemical composition due to turbulence.
  - Main gases: Nitrogen 78 %, Oxygen 21 %, Argon 0.93 %, CO<sub>2</sub>
     0.04 %.
  - Also contains ozone, neon, helium, methane, hydrogen in traces.
  - Includes troposphere, stratosphere, mesosphere.
- 2. Heterosphere (90 km 10,000 km)
  - Gases are arranged by molecular weight due to lack of mixing.
  - Divided into four sub-layers:
    - (i) Molecular nitrogen layer 90–200 km
    - (ii) Oxygen layer 200-1100 km

- (iii) Helium layer up to 3500 km
- (iv) Atomic hydrogen layer extends to the outermost limit of atmosphere