

Key Concept

- Lichens lack roots, stems, and leaves.
- They absorb nutrients directly from the atmosphere and via surface entrapment.
- The symbiosis:
 - Mycobiont (fungus) → absorbs water & minerals.
 - Phycobiont (alga/cyanobacteria) → photosynthesis, carbohydrate supply.

Sources of Nutrition

1. Atmospheric Nutrition

- Rain, dew, fog, and air-borne dust.
- Absorption of gases like CO₂ , SO₂ , NO₂ directly across the thallus.

2. Surface Entrapment

- o Rough surfaces of bark, rocks, and soil trap soluble nutrients.
- \circ Organic acids secreted \rightarrow dissolve minerals.

3. Nitrogen Fixation

- o Cyanobacteria in lichens (e.g., *Nostoc*) fix atmospheric $N_2 \rightarrow$ amino acids.
- o Important for nutrient-poor ecosystems.

Nutrient Flow

- **Photobiont** → synthesizes sugars via photosynthesis.
- **Mycobiont** → provides water, minerals, shelter.
- Exchange ensures survival in harsh habitats (rocks, deserts, alpine zones).

Mnemonics

• "Lichens Eat FAN"

- o Fog/Dew/Rain
- o Atmospheric gases (CO₂, SO₂, NO₂)
- Nitrogen fixation by cyanobacteria

Exam Capsule

- Nutrition in lichens is atmospheric-based.
- No roots \rightarrow entirely dependent on rainwater, dew, fog, air gases.
- Cyanobacteria fix nitrogen.
- Play a key role in soil formation & ecosystem enrichment.

Crustose Lichens (Crust-like)

- Form thin **crusts** on rocks, bark, or soil.
- **Thallus**: flat, tightly attached → cannot be separated.
- Internal structure: poorly differentiated.
- Ecological role: pioneer species in succession (rock → soil).
- Z Examples: Graphis, Lecanora, Rhizocarpon.

♦ Foliose Lichens (Leaf-like)

- Thallus resembles leafy lobes, loosely attached to substratum by rhizines.
- Upper & lower cortex present → internal differentiation more advanced.
- Easily peeled off surface.
- Z Examples: Parmelia, Xanthoria, Physcia.

Fruticose Lichens (Shrub-like)

- Highly branched, cylindrical or pendulous thalli.
- Attached only at the base → erect or hanging.
- Most advanced morphological type.
- Examples: Cladonia rangiferina (reindeer moss), Usnea (old man's beard).

Other Forms (Rare/Intermediate)

- **Leprose lichens** → powdery, lacking distinct layers.
- **Filamentous** → thread-like (e.g., *Cystocoleus*).

♦ Mnemonics ♀

- "C-F-F" = Crust, Foliose, Fruticose
 - o **C**rustose → Crust-like, tightly fixed.
 - Foliose → Flat leafy lobes.
 - o **F**ruticose → Free, branched, shrub-like.

Exam Capsule @

• **Crustose** → primitive, pioneer colonizers of rocks.

- **Foliose** \rightarrow leafy, with rhizines for attachment.
- $\bullet \quad \textbf{Fruticose} \rightarrow \textbf{most advanced}, \, \textbf{erect/hanging}, \, \textbf{cylindrical branches}.$
- Lichen morphology is **adaptive** to moisture & habitat conditions.

♦ 1. Heteromerous Lichens

- Well-differentiated thallus with distinct layers.
- Layers (top → bottom):
 - 1. **Upper Cortex** protective, compact fungal hyphae.
 - 2. **Algal Layer** green algae/cyanobacteria; photosynthetic zone.
 - 3. **Medulla** loose fungal hyphae for storage & aeration.
 - 4. **Lower Cortex** compact fungal tissue with rhizines (attachment).
- Z Examples: Parmelia, Cladonia, Xanthoria.
- Adaptive feature → better protection, water conservation.

2. Homoiomerous Lichens

- No clear differentiation of layers.
- Algal cells scattered irregularly throughout fungal tissue.
- Simpler organization → less protection, more prone to desiccation.
- Examples: Leptogium, Collema.

♦ Comparative Table **Ⅲ**

Feature	Heteromerous	Homoiomerous
Layering	Distinct (4 layers)	Absent
Algal Distribution	In defined algal layer	Scattered
Adaptation	Advanced, resistant	Primitive, sensitive
Examples	Parmelia, Cladonia	Collema, Leptogium

♦ Mnemonics ♀

- Heteromerous = 4 Layers → "U-A-M-L"
 - Upper cortex
 - Algal layer
 - Medulla
 - Lower cortex
- **Homoiomerous** → "H = Homogenous" (algae scattered everywhere).

Exam Capsule

- Heteromerous lichens \rightarrow advanced, layered, more common.
- **Homoiomerous lichens** → primitive, simple structure.
- Presence/absence of **differentiation** is the key diagnostic feature.

- ♦ 1. Ascolichens (≈ 98% lichens)
 - **Mycobiont** → Ascomycota (sac fungi).

- **Photobiont** → green algae (*Trebouxia*, *Trentepohlia*) or cyanobacteria (*Nostoc*).
- Reproduction:
 - Asexual → fragmentation, soredia (powdery), isidia (corticated).
 - o Sexual → via ascocarps:
 - Apothecia → open, disc/cup-shaped (e.g., Xanthoria).
 - Perithecia → flask-shaped with ostiole (e.g., Graphis).
 - Cleistothecia → closed, rupture for spore release (e.g., Calicium).
- Examples: Parmelia, Physcia, Cladonia, Graphis.

♦ 2. Basidiolichens (Rare)

- Mycobiont → Basidiomycota (club fungi).
- Often with cyanobacteria (bluish-green tint).
- Reproduction → basidiospores (sexual), fragmentation (asexual).
- Examples: Cora pavonia, Dictyonema.

♦ 3. Deuterolichens (Imperfect lichens)

- **Mycobiont** → Deuteromycota (no sexual stage).
- **Reproduction** → asexual only: conidia, fragmentation, soredia.
- **Thallus** → simple, poorly developed.
- Examples: Rare, under molecular studies.

♦ Mnemonics ♀

- "ABD" = Lichen Groups
 - Ascolichens → Ascocarps
 - o Basidiolichens → Basidiospores
 - Deuterolichens → Deuteromycota, no sex

Exam Capsule @

- Ascolichens dominate (≈ 98%).
- **Basidiolichens** → very rare, mostly tropical.

■ 5 – Ascolichens (Structure & Reproduction) Ø ②

General Features

- Mycobiont: Ascomycota (sac fungi).
- Photobiont: Green algae (*Trebouxia, Trentepohlia*) or cyanobacteria (*Nostoc*).
- Make up ~98% of lichens.

• Show all three main thallus types: **crustose**, **foliose**, **fruticose**.

Reproduction

1. Vegetative / Asexual

- **Fragmentation** → thallus pieces grow independently.
- Soredia → algal cell + fungal hyphae, powdery, dispersed by wind/rain.
- Isidia → corticated, solid outgrowths; cylindrical or coralloid.

2. Sexual (by Ascomata / Ascocarps)

Apothecia

- Disc or cup-shaped.
- Exposed hymenium → asci + paraphyses visible.
- o Example: Xanthoria, Lecanora.

Perithecia

- o Flask-shaped, with **ostiole** (opening).
- o Asci formed inside cavity.
- o Example: Graphis.

Cleistothecia

- Completely enclosed; spores released only on rupture.
- Example: Calicium.

Importance

- **Soil formation** → secrete acids to weather rocks.
- Nitrogen enrichment → cyanobacterial photobiont fixes N₂.
- **Ecological role** → pioneers in succession.
- **Bioindicators** → highly sensitive to air pollution (SO₂).

Mnemonics

- Ascocarp Types → "A-P-C"
 - Apothecia → open cup
 - o Perithecia → pore/ostiole
 - Cleistothecia → closed body

♦ Exam Capsule **᠖**

- **Ascolichens** = dominant type of lichens.
- Reproduction → asexual (soredia, isidia) + sexual (apothecia, perithecia, cleistothecia).
- Apothecia = exposed cup; Perithecia = flask with ostiole; Cleistothecia = closed.
- Sensitive to air pollution → indicator species.

General Features

- **Mycobiont** → Basidiomycota (club fungi).
- **Photobiont** → Green algae or cyanobacteria.
- Very rare group (contrast: Ascolichens dominate).
- Occur mostly in tropical & subtropical forests (especially cloud forests).

• Thallus: Crustose, foliose, or fruticose.

Reproduction

Asexual

- Fragmentation → thallus breaks into parts.
- Soredia & isidia (vegetative propagules).

Sexual

- Via basidia → produce basidiospores.
- Basidiospores germinate \rightarrow hyphae fuse with photobiont \rightarrow new thallus.

Ecological Role

- Pioneers on bark, leaves, soil.
- Contribute to nitrogen fixation when photobiont is cyanobacteria.
- Involved in **moisture retention** and **nutrient cycling** in forests.
- Help in colonization of shaded, humid habitats.

Examples

- Cora pavonia
- Dictyonema glabratum
- Corella

♦ Mnemonics ♀

- Basidiolichens = "Rare BBC"
 - o Basidia → basidiospores
 - o **B**lue-green tint (cyanobacteria often present)
 - o Cora, Corella, Dictyonema = examples

Exam Capsule @

- **Basidiolichens** → rare, tropical, basidiospores as sexual stage.
- Photobiont often cyanobacteria → nitrogen fixation.
- Mostly foliose or fruticose thalli.
- Examples: Cora, Dictyonema, Corella.

□ 7 – Deuterolichens (Imperfect Lichens)

General Features

- **Mycobiont** → Deuteromycota (Fungi Imperfecti, no known sexual stage).
- Represent the least common and least studied type of lichens.
- Thallus: Simple, poorly organized, usually crustose.
- Found mostly in **moist**, **shaded habitats** (rainforests, bogs, swamps).

Reproduction

- Only asexual →
 - Fragmentation
 - Conidia (asexual fungal spores)
 - Soredia (powdery propagules)
- No sexual structures like ascocarps or basidiocarps.

Ecological Role

- Soil stabilizers → bind loose soil particles.
- **Nutrient cycling** → decompose organic material.
- Early colonizers in shaded forest floors.
- Contribute to micro-ecosystem development.

Examples

- Poorly defined; many lichens temporarily grouped here until DNA studies place them into Asco/Basidiolichens.
- Considered a temporary/artificial category.

♦ Mnemonics ♀

- "D = Deuterolichens → D = Defective"
 - Defective because they lack a sexual stage.

Exam Capsule

- **Deuterolichens** = imperfect lichens (no sexual stage).
- Reproduce only asexually (conidia, soredia, fragmentation).
- Thallus simple, poorly organized.
- Considered **artificial grouping** → many later reassigned by molecular phylogeny.

■ 8 – Lichen Reproduction (Asexual vs Sexual) # ?

♦ 1. Asexual Reproduction (Vegetative / Propagative)

- Fragmentation → thallus breaks into small pieces; each piece regenerates.
- Soredia \rightarrow
 - Tiny powdery bodies = algal cell + fungal hyphae.
 - Dispersed by wind, rain.
 - Easily colonize new substrata.
- Isidia →
 - o Corticated, solid, finger-like outgrowths on thallus.
 - Break off & propagate.

- **Conidia** → asexual fungal spores (rare in lichens).
- **Key Point**: Asexual methods dominate; ensure rapid dispersal & survival in harsh conditions.

2. Sexual Reproduction (via Mycobiont)

- Only fungal partner undergoes sexual reproduction.
- Ascolichens → form ascocarps:
 - o Apothecia (cup/disc-shaped, open hymenium).
 - o Perithecia (flask-shaped, ostiole opening).
 - o Cleistothecia (completely enclosed, spores released by rupture).
- **Basidiolichens** → form **basidiospores** on basidia.
- Photobiont (alga/cyanobacterium) remains asexual.
- **Key Point**: Sexual cycle ensures **genetic recombination** in fungal partner.

♦ Comparative Table **Ⅲ**

Feature	Asexual (Vegetative/Propagative)	Sexual (Fungal Partner)
Main Units	Soredia, Isidia, Fragmentation	Ascospores, Basidiospores
Speed of Spread	Fast, mass dispersal	Slow, dependent on spore germination
Involvement of Alga	Yes (carried along in soredia/isidia)	No (fungus alone reproduces sexually)
Genetic Variation	No (clones of parent)	Yes (new recombination in fungus)
Examples	Parmelia (soredia, isidia)	Graphis (perithecia), Xanthoria (apothecia)

Mnemonics

- Asexual Units = "F-S-I-C"
 - Fragmentation
 - Soredia
 - o Isidia
 - Conidia

- Sexual Ascocarps = "APC"
 - o Apothecia
 - o Perithecia
 - o Cleistothecia

Exam Capsule

- Asexual dominates → ensures dispersal in extreme habitats.
- Soredia & Isidia → vegetative propagules carrying both partners.
- Sexual reproduction \rightarrow only fungus participates; alga never reproduces sexually inside lichen.
- **Ascolichens** → ascocarps (apothecia, perithecia, cleistothecia).
- **Basidiolichens** → basidiospores.