* Definition / Concept

- **Plant Tissue Culture (PTC)** = *In vitro* aseptic culture of plant cells, tissues, organs, or whole plants on a nutrient medium under controlled conditions.
- Based on the principle of **Totipotency** the ability of a single cell to regenerate into a complete plant.

Sasic Requirements

- 1. **Explant** Small piece of plant tissue used to start culture (e.g., meristem, leaf, root, stem, anther).
- 2. **Culture medium** Nutrient solution (MS medium = most common).
- 3. **Aseptic conditions** Use of laminar airflow, autoclave sterilization.
- 4. **Controlled environment** Light, temperature, humidity.

- 1902 Haberlandt: Proposed totipotency, father of tissue culture.
- 1939 White: Cultured root tips.
- 1941 Gautheret: Demonstrated callus culture.
- 1958 Steward: Regenerated whole carrot plants from single cells.
- 1962 Murashige & Skoog (MS): Developed standard medium → revolutionized plant tissue culture.

A Types of Tissue Culture

- Callus culture Unorganized cell mass.
- **Organ culture** Whole organ/part (e.g., root/shoot).
- Single-cell culture Individual cell isolation.
- Meristem culture Virus-free plants.
- **Protoplast culture** Fusion & hybrid plants.
- Embryo culture Embryo rescue, hybridization.

□ Mnemonics

- "Every Medium Always Controls" → Explant, Medium, Asepsis, Controlled environment.
- PTC Pioneers → Haberlandt (concept) → White (roots) → Gautheret (callus) → Steward (plant regen) → MS (medium).

M Key Uses

- Clonal propagation (micropropagation).
- Production of disease-free plants.
- Germplasm conservation.
- · Genetic engineering & transgenic plants.
- Production of secondary metabolites (medicinal compounds).

© Exam Capsule

- **Totipotency** coined by Haberlandt (1902).
- MS medium Murashige & Skoog, 1962 (most used).
- Meristem culture virus elimination.
- Carrot culture by Steward (1958) classic example of totipotency.

El Cheat Sheet 2 – Plant Tissue Culture Media Composition & Types □

☼ Concept

Culture medium = **artificial nutrient environment** that supports *in vitro* plant growth. The most widely used = **MS (Murashige & Skoog, 1962)**.

Major Components of Culture Medium

- 1. Inorganic Salts
 - Macronutrients: N, P, K, Ca, Mg, S.
 - o Micronutrients: Fe, Mn, Zn, Cu, B, Mo, Co, I.

2. Carbon Source

Usually Sucrose (2–3%) → main energy source.

3. Vitamins

o Thiamine (B₁), Nicotinic acid, Pyridoxine (B₆), Glycine.

4. Plant Growth Regulators (PGRs)

- o **Auxins** (IAA, NAA, 2,4-D) \rightarrow root induction, callus formation.
- o **Cytokinins** (BAP, Kinetin, Zeatin) → shoot induction.
- o **Gibberellins** → elongation, embryogenesis.
- o **Abscisic acid (ABA)** → maturation, dormancy.

5. Organic Additives

o Amino acids, coconut milk, yeast extract, casein hydrolysate.

6. Gelling Agent

○ Agar (0.8–1.0%), Gelrite, Phytagel \rightarrow solid support.

7. **pH**

o Optimal: **5.6–5.8** before autoclaving.

☐ Common Media Types

- **MS Medium (1962)** → High salts, supports most plants.
- White's Medium (1939) → First root culture medium.
- Gamborg's B5 Medium (1968) → Soybean cell suspension, useful for protoplasts.
- Nitsch & Nitsch Medium (1969) → Anther/pollen culture.
- SH Medium (Schenk & Hildebrandt, 1972) → Cell suspension cultures.

Application

Ⅲ Comparison Table

Special Feature

Modium

Wedium	Special Feature	Application
MS (1962)	Rich in salts & nutrients	General use, micropropagation
White (1939)	First medium	Root culture
Gamborg B5	High vitamins	Protoplast & cell suspension
Nitsch	Balanced hormones	Anther/pollen culture
SH	Rich nitrate	Cell suspensions

■ Mnemonics

- "Some Vitamins Add Real Growth" = Salts, Vitamins, Additives, Regulators, Gelling agent.
- Media history: White → MS → Gamborg → Nitsch → SH.

© Exam Capsule

- **MS Medium** = standard, high nitrate & ammonium.
- **Sucrose** = common carbon source.
- **pH 5.6–5.8** optimal.
- **Gamborg B5** = protoplast culture.
- Nitsch medium = pollen culture.

E Cheat Sheet 3 - Callus Culture & Organogenesis ♥□

Callus Culture (Unorganized Growth)

- Callus = Mass of undifferentiated, unorganized cells produced from explants in presence of auxins + cytokinins.
- First demonstrated by Gautheret (1939).

Process

- 1. **Explant inoculation** on solid medium.
- 2. **Dedifferentiation** → Explant cells revert to meristematic state.
- 3. **Proliferation** \rightarrow Cell mass forms (callus).
- 4. **Redifferentiation** \rightarrow Under hormonal control \rightarrow roots, shoots, embryos.

XX Organogenesis (Organ Formation in vitro)

- Organogenesis = Differentiation of callus or single cells into shoots or roots.
- **Direct organogenesis** Explant produces organs without callus.
- Indirect organogenesis Via callus phase.

Hormonal Regulation

- **High Auxin : Low Cytokinin** → Root induction.
- **High Cytokinin : Low Auxin** → Shoot induction.
- **Balanced** → Callus proliferation.

□ Applications

Micropropagation (mass clonal propagation).

- Virus-free plants (from meristems).
- · Secondary metabolite production.
- Genetic engineering (regeneration of transgenic plants).

Quick Table

Ratio (Auxin : Cytokinin) Result Example

High Auxin : Low Cytokinin Root induction NAA → roots in tomato

Low Auxin : High Cytokinin Shoot induction BAP \rightarrow shoots in tobacco

Balanced Callus growth 2,4-D + Kinetin

■ Mnemonics

- "Root at Bottom, Shoot at Top" 🔭
 - o Auxin (bottom, roots).
 - o Cytokinin (top, shoots).

© Exam Capsule

- Callus = unorganized mass (Gautheret, 1939).
- Organogenesis = shoot/root induction under hormonal control.
- **Direct organogenesis** = no callus stage → preserves genetic stability.
- **Indirect organogenesis** = via callus → prone to somaclonal variation.

El Cheat Sheet 4 – Somatic Embryogenesis & Synthetic Seeds

☆ Somatic Embryogenesis (SE)

- Process where somatic (non-reproductive) cells form embryos that resemble zygotic embryos.
- First reported in carrot by Steward (1958).
- Totipotency at cellular level → basis of SE.

Stages of Somatic Embryogenesis

1. **Induction** – Somatic cells dedifferentiate → embryogenic callus.

- 2. **Development** Embryo passes stages: globular → heart → torpedo → cotyledonary.
- 3. **Maturation** Accumulation of proteins, starch, lipids.
- 4. **Germination** Somatic embryo → seedling.

* Types of Somatic Embryogenesis

- **Direct SE** Embryos form directly from explant without callus → genetically stable.
- Indirect SE Via callus → prone to somaclonal variation.

Synthetic (Artificial) Seeds

- Somatic embryos encapsulated in hydrogel (e.g., sodium alginate + CaCl₂).
- Can be sown like seeds.

Advantages

- Easy handling, storage, transport.
- Uniform clonal propagation.
- Disease-free planting material.
- Used in crops with poor seed viability or sterility.

□ Applications

- Mass clonal propagation.
- Germplasm conservation.
- Production of uniform hybrids.
- Tool in genetic engineering & biotechnology.

Quick Table

Feature	Somatic Embryogenesis	Synthetic Seeds
Definition	Embryos from somatic cells	Encapsulation of somatic embryos
Stability	$Direct\;SE\tostable$	High genetic fidelity
Storage	Short-term	Long-term possible

Application Micropropagation, transgenics Seed-like handling, field planting

- Embryo Stages → "Good Healthy Tomatoes Cook" = Globular → Heart → Torpedo → Cotyledonary.
- Synthetic seeds → "Alginate = Artificial."

© Exam Capsule

- Steward (1958) → carrot SE.
- Somatic embryos mimic zygotic embryos, but lack endosperm.
- **Synthetic seeds** = somatic embryos in sodium alginate gel.
- Used in banana, sugarcane, carrot, orchids.

☐ Cheat Sheet 5 – Protoplast Culture & Somatic Hybridization □ 🖫

Protoplast – Definition

- **Protoplast** = Plant cell without a cell wall, surrounded only by plasma membrane.
- Obtained by:
 - o **Enzymatic method** → Cellulase + Pectinase.
 - o **Mechanical method** → Micromanipulation (less common).

Protoplast Culture

- Culture of isolated protoplasts in **osmotic stabilizers** (mannitol, sorbitol).
- First successful culture: Cockings (1960) tobacco protoplasts.
- Protoplasts can:
 - Regenerate cell wall.
 - Divide & form callus.
 - Undergo somatic hybridization.

Somatic Hybridization

Fusion of two somatic protoplasts → somatic hybrids (cytoplasmic + nuclear fusion).

Methods of Fusion

1. **Spontaneous fusion** – Rare, occurs naturally.

2. Induced fusion

- Chemical: Polyethylene glycol (PEG).
- o **Electrical**: Electrofusion (electric pulses).

Types of Hybrids

- **Symmetric hybrid** Fusion of nuclei + cytoplasm of both parents.
- **Asymmetric hybrid** One parent contributes partial genome.
- **Cybrid (Cytoplasmic hybrid)** Only cytoplasmic fusion; nucleus from one parent + cytoplasm from both.

Applications

- Overcoming sexual incompatibility barriers.
- Creation of novel hybrids (e.g., **Pomato** = Potato + Tomato).
- Transfer of cytoplasmic traits (disease resistance, male sterility).
- Genetic studies & crop improvement.

Quick Table

Type of Fusion Feature

Example

Symmetric hybrid Both nuclei + cytoplasm fused Pomato (Potato × Tomato)

Asymmetric hybrid Partial genome from one parent Useful for gene introgression

Cybrid Nucleus from one, cytoplasm mix Disease resistance, CMS

□ Mnemonics

- **Fusion types** → "SAC" = Symmetric, Asymmetric, Cybrid.
- Enzymes for protoplast → "Cellu-Pectu" = Cellulase + Pectinase.

© Exam Capsule

- Protoplast definition = cell without wall.
- First protoplast culture → Tobacco (1960).
- **Somatic hybridization** → PEG or electrofusion.
- Pomato = famous somatic hybrid.

• **Cybrids** → cytoplasmic transfer of traits.

El Cheat Sheet 6 – Anther & Pollen Culture (Androgenesis & Haploid Plants) **♥**□

☼ Concept

- Androgenesis = Development of haploid plants from male gametophyte (anther or pollen) under *in vitro* conditions.
- Produces **haploids** (n) → doubled haploids (2n) for pure line production.

Methods

1. Anther Culture

- Introduced by **Guha & Maheshwari (1964)** in *Datura innoxia*.
- Anthers placed on nutrient medium → microspores divide → form callus or embryos → haploid plantlets.

2. Pollen Culture

- Isolated pollen grains cultured directly → develop into haploid embryos.
- Advantage: Avoids diploid somatic tissue contamination.

Pathways of Haploid Formation

- 1. **Direct androgenesis** Microspores → embryos → plantlets.
- 2. Indirect androgenesis Microspores \rightarrow callus \rightarrow organogenesis/embryogenesis.

Applications

- **Crop improvement**: Rapid production of homozygous pure lines.
- Mutation breeding: Easy detection of recessive mutations.
- **Genetic studies**: Chromosome mapping, gene expression.
- **Hybrid breeding**: Doubled haploids = stable hybrids.

Quick Table

Method	Source	Outcome	Example
Anther culture	Whole anther	Haploid plants via callus or embryos	Datura innoxia
Pollen culture	Isolated microspores	Direct haploids	Barley, Rice
Direct pathway	Microspore → embryo	Genetically stable	Cereals
Indirect pathway	Callus → plantlets	Somaclonal variation possible	Tobacco

- "A \rightarrow Datura, P \rightarrow Cereals"
 - Anther culture first in Datura.
 - o Pollen culture widely in cereals (barley, rice).
- Haploid advantage → "Half genome, Whole truth" (recessive traits visible).

© Exam Capsule

- First anther culture → Datura innoxia (Guha & Maheshwari, 1964).
- **Pollen culture** → cereals (barley, rice).
- **Haploids (n)** → doubled using **colchicine** → instant pure lines.
- **Applications**: Mutation breeding, hybrid breeding, genetic studies.

☼ Concept

- **Gynogenesis** = Development of haploid plants from **female gametophyte** (ovary/ovule).
- **Embryo culture** = In vitro growth of isolated immature or mature embryos.
- **Embryo rescue** = Technique to save hybrid embryos that would normally abort.

Methods

1. Ovary Culture

- Whole ovary cultured.
- Useful for studying fertilization and early embryo development.

2. Ovule Culture

- Ovules isolated & cultured.
- Induces haploid development (gynogenic haploids).

3. Embryo Culture

- Introduced by Hanning (1904).
- Excised embryo → placed on nutrient medium → develops into seedling.
- Types:
 - o **Mature embryo culture** → normal seed germination in vitro.
 - o **Immature embryo culture** → embryo rescue (before abortion).

Applications

- Embryo rescue: Overcomes post-zygotic hybridization barriers.
 - o Wide crosses (e.g., *Triticum × Secale* → Triticale).
- **Gynogenesis**: Haploid plants from ovules.
- Seedless fruit production (embryo culture in grapes, orchids).
- Study of embryogenesis (nutritional & hormonal requirements).
- **Hybrid breeding** \rightarrow enables production of hybrids from distant crosses.

Quick Table

Culture Type	Explant	Use	Example
Ovary	Whole ovary	Fertilization, embryo study	Petunia
Ovule	Ovule	Haploid (gynogenesis)	Sugar beet
Embryo	Embryo	Embryo rescue, hybridization	Triticale, Grapes

■ Mnemonics

• "Ovary \rightarrow Fertilization, Ovule \rightarrow Haploids, Embryo \rightarrow Rescue".

• Embryo rescue crops → "Triticale Grapes Orchid".

© Exam Capsule

- Embryo culture discovered by Hanning (1904).
- **Gynogenesis** → haploids via female gametophyte.
- **Embryo rescue** → saves wide hybrid embryos (e.g., triticale).
- Used in overcoming interspecific & intergeneric barriers.
- Key tool in hybridization, crop improvement, and seedless fruit production.

E Cheat Sheet 8 – Somaclonal Variation & Applications ♥□

☼ Definition

- **Somaclonal variation** = Genetic variation observed among plants regenerated from *in vitro* culture (callus, protoplast, cell suspensions).
- Term coined by Larkin & Scowcroft (1981).

Sources of Somaclonal Variation

- 1. Chromosomal changes
 - Polyploidy, aneuploidy.
 - o Structural changes (deletions, duplications, inversions, translocations).

2. Gene mutations

o Point mutations, altered gene expression.

3. Epigenetic changes

o DNA methylation, transposons, gene silencing.

4. Culture-induced stress

o Prolonged callus culture → genetic instability.

Examples

- Disease resistance: Potato, Sugarcane.
- Stress tolerance: Salt-tolerant rice, aluminum-tolerant maize.
- Quality traits: High alkaloid content in *Datura*, high shikonin in *Lithospermum*.

Applications

- **Crop improvement**: Traits like resistance to disease, pests, drought, salinity.
- Secondary metabolite production: Alkaloids, steroids, pigments.
- **Germplasm enhancement**: Introducing variability in clonally propagated crops.
- Alternative to mutation breeding.

Quick Table

Trait Improved	Crop Example
Disease resistance	Potato, Sugarcane
Salt tolerance	Rice
Aluminium tolerance	Maize
High alkaloid content	Datura

■ Mnemonics

- "C-GECS" = Chromosome, Gene, Epigenetic, Culture Stress.
- **Somacional uses** → "R-SQ" = Resistance, Stress tolerance, Quality.

© Exam Capsule

- Coined by Larkin & Scowcroft (1981).
- Major source = prolonged callus culture.
- **Somacional variants** → disease resistance (potato, sugarcane), stress tolerance (rice, maize).
- Useful for **clonal crops** where traditional breeding is limited.

Cheat Sheet 9 – Cryopreservation & Germplasm Conservation 🍪 🔭

Cryopreservation - Definition

 Cryopreservation = Long-term storage of biological material (cells, tissues, embryos, seeds) at ultra-low temperatures (-196°C in liquid nitrogen). • Metabolic activities almost stop → material remains viable indefinitely.

Methods of Cryopreservation

1. Slow Freezing □

o Gradual cooling \rightarrow water exits cell \rightarrow less ice crystal damage.

2. Rapid Freezing 4

o Direct immersion in liquid nitrogen.

3. Vitrification □

Use of cryoprotectants → water turns into glassy state (no crystals).

Cryoprotectants

- Substances that prevent ice damage.
- Examples: DMSO, Glycerol, Proline, Mannitol, Sucrose, PEG.

Germplasm Conservation

- **Germplasm** = total genetic resources of a species.
- Two types:
 - 1. **In situ conservation** → natural habitat (biosphere reserves, sanctuaries).
 - 2. **Ex situ conservation** → outside habitat (seed banks, gene banks, tissue culture).

In vitro Germplasm Conservation

- Short-term: slow growth using osmotic agents (mannitol, sorbitol).
- Long-term: cryopreservation.

Applications

- Conservation of endangered, rare, or wild species.
- Preservation of vegetatively propagated crops (potato, banana).
- Conservation of recalcitrant seeds (coconut, coffee, cocoa).
- International germplasm exchange.

Quick Table

Method	Example Application
Slow growth in vitro	Potato, Sugarcane
Cryopreservation	Banana, Coffee, Coconut
Seed bank storage	Rice, Wheat, Maize

- Cryoprotectants → "Good Scientists Prefer Making Safe Plants"
 - o Glycerol, Sucrose, Proline, Mannitol, Sorbitol, PEG.
- Conservation → "In = Inside nature, Ex = Exit nature."

© Exam Capsule

- Cryopreservation = -196°C in LN₂.
- Cryoprotectants prevent ice crystal damage.
- Recalcitrant seeds (coconut, cocoa, coffee) → cannot be stored in seed banks →
 cryopreservation essential.
- Potato, Banana, Sugarcane widely conserved using in vitro methods.

Major Applications

- 1. Micropropagation (Clonal Propagation)
 - · Rapid multiplication of elite genotypes.
 - Produces uniform, disease-free plants.
 - Widely applied in banana, sugarcane, potato, orchids.

2. Production of Disease-Free Plants

- Meristem culture eliminates systemic viruses.
- Example: Virus-free sugarcane, potato, banana.

3. Haploid Breeding

- Anther/pollen culture → haploids (n) → doubled haploids (2n).
- Produces homozygous pure lines in a single generation.

4. Somaclonal Variation

- Source of novel variability → disease resistance, stress tolerance.
- Eg: Salt-tolerant rice, resistant sugarcane.

5. Synthetic Seeds

Somatic embryos encapsulated in sodium alginate → artificial seeds.

6. Secondary Metabolite Production

- Valuable compounds from cell cultures.
- Examples:
 - o Shikonin (Lithospermum).
 - o Berberine (Coptis).
 - o Diosgenin (*Dioscorea*).

7. Genetic Engineering & GM Crops

- Tissue culture = platform for transformation & regeneration.
- Applications: Bt cotton, Golden rice.

8. Germplasm Conservation

- In vitro storage, cryopreservation.
- For recalcitrant seed crops (coconut, coffee).

Industrial Applications

- **Pharmaceuticals** → alkaloids, steroids, pigments.
- **Food industry** → flavor compounds (vanillin).
- **Bioenergy** → in vitro biomass production.

Quick Table

Application	Example
Micropropagation	Banana, Sugarcane
Meristem culture	Virus-free potato
Haploid breeding	Barley, Rice

Application	Example
Somaclonal variation	Salt-tolerant rice
Secondary metabolites	Shikonin, Berberine
GM crops	Bt cotton, Golden rice

- "M-H-S-S-G" = Micropropagation, Haploids, Somaclonal variation, Secondary metabolites, GM crops.
- **Secondary metabolites** → "Big Strong Drugs" = Berberine, Shikonin, Diosgenin.

© Exam Capsule

- Micropropagation = clonal propagation.
- Meristem culture = virus-free crops.
- Anther culture (1964, Datura) → haploids.
- Somaclonal variation = genetic diversity source.
- Synthetic seeds = sodium alginate encapsulated embryos.
- Secondary metabolites from cultures = pharmaceutical use.