E Cheat Sheet 1 - Introduction to Genetics & Mendelian Principles □ 🖫

Genetics Definition

- Genetics = science of heredity and variation.
- **Heredity** = transmission of traits from parents to offspring.
- Variation = differences among individuals of the same species.

Father of Genetics

- Gregor Johann Mendel (1822–1884).
- Conducted experiments on garden pea (Pisum sativum) between 1856–1863.
- Published in 1866 → work ignored until rediscovery (1900) by Hugo de Vries, Correns & Tschermak.

Importance of Mendel's Work

- Used quantitative approach with statistical analysis.
- Selected pea plant → easily available, short life cycle, distinct contrasting traits, selfand cross-pollination possible.
- Established laws of inheritance still valid today.

Mendelian Principles

- 1. Unit factors (genes) control characters.
- 2. Genes occur in pairs (alleles).
- 3. During gamete formation, alleles **segregate** so each gamete receives only one.
- 4. Genes for different traits assort independently.

Key Terms

- Gene: hereditary unit controlling a character.
- Allele: alternative forms of a gene.
- **Locus**: specific location of a gene on chromosome.
- **Homozygous**: both alleles identical (AA, aa).
- **Heterozygous**: alleles different (Aa).
- **Genotype**: genetic constitution (e.g., Aa).
- **Phenotype**: observable trait (e.g., tall, dwarf).

♦ Mnemonics ♀

- Mendel's Principles → "USA"
 - Unit factors (genes)
 - Segregation
 - Assortment (independent)

Exam Capsule

- Genetics = heredity + variation.
- Mendel = Father of Genetics, pea plant experiments (1856–63).
- Rediscovery in 1900 by Correns, de Vries, Tschermak.
- Principles: unit factors, segregation, independent assortment.

Cheat Sheet 2 – Basic Genetic Terminology □

Gene

- A hereditary unit located on chromosome.
- · Codes for a specific trait or protein.

Allele

- Alternative forms of a gene at the same locus.
- Example: T (tall) vs t (dwarf).

Homozygous vs Heterozygous

- Homozygous → both alleles same (TT, tt).
- **Heterozygous** → alleles different (Tt).

Genotype vs Phenotype

- **Genotype** = genetic makeup (e.g., Tt).
- **Phenotype** = physical expression (e.g., Tall).
- Genotype + Environment = Phenotype.

Wild type vs Mutant

- Wild type allele → normal/common in population.
- **Mutant allele** → altered form due to mutation (often rare).

Dominant vs Recessive

- Dominant allele → expresses trait even in heterozygous condition (T).
- Recessive allele → expressed only in homozygous condition (tt).

Locus

• Fixed position of a gene on a chromosome.

Mnemonics

- Genotype = Gene type | Phenotype = Physical type.
- Allele = "Alternative version of a gene".

Exam Capsule

- Gene = hereditary unit; Allele = alternate gene form.
- Homozygous (TT/tt), Heterozygous (Tt).
- Genotype = genetic constitution; Phenotype = visible trait.
- Wild type = normal allele; Mutant = altered allele.

El Cheat Sheet 3 – Mendel's Experiments & Methodology 🖫 📊

Choice of Experimental Plant: Pisum sativum (Garden Pea)

- Short life cycle, easy to cultivate.
- Naturally **self-pollinating** but can be cross-pollinated manually.
- Produced large number of seeds.
- Had **7 pairs of contrasting traits** (e.g., tall vs dwarf, round vs wrinkled).

Mendel's Experimental Method

- 1. Selection of true-breeding parents (homozygous).
- 2. Cross-pollination to produce hybrids.
- 3. Careful **recording of data** for multiple generations (P, F_1 , F_2).
- 4. Use of **large sample size** for statistical accuracy.
- 5. Application of **mathematical ratios** (3:1, 9:3:3:1).

Traits Studied by Mendel (7 Pairs)

1. Stem height: Tall vs Dwarf.

- 2. Flower color: Violet vs White.
- 3. Flower position: Axial vs Terminal.
- 4. Pod color: Green vs Yellow.
- 5. Pod shape: Inflated vs Constricted.
- 6. Seed shape: Round vs Wrinkled.
- 7. Seed color: Yellow vs Green.

Rediscovery of Mendel's Work

- Published in 1866 (ignored for ~34 years).
- Rediscovered in 1900 independently by Hugo de Vries, Carl Correns, Erich von Tschermak.

Significance

- Introduced concept of factors (genes).
- First to use statistical analysis in biology.
- Foundation of modern genetics.

♦ Mnemonics ♀

- 7 Traits → "Some Flowers Produce Pretty Seeds"
 - o Stem height
 - Flower color/position
 - o Pod color/shape
 - Seed color/shape

Exam Capsule

- Mendel chose pea plant (Pisum sativum) for 7 contrasting traits.
- Used large data, true-breeding lines, statistical ratios.
- Published in 1866, rediscovered in 1900 by de Vries, Correns, Tschermak.
- Laid foundation of laws of inheritance.

Cheat Sheet 4 - Mendel's Laws of Inheritance

♦ 1. Law of Dominance

- When two different alleles are present, one dominates (expressed), the other is recessive (masked).
- Example: In monohybrid cross of tall (TT) x dwarf (tt):
 - \circ $F_1 = all Tall (Tt).$
- Ratio: 3:1 (phenotype) in F₂.

2. Law of Segregation (Purity of Gametes)

- Allele pairs separate (segregate) during gamete formation.
- Each gamete carries only one allele for each trait.
- Example: Monohybrid cross (Tt × Tt) → F₂ = 1 TT : 2 Tt : 1 tt.
- Genotypic ratio = 1:2:1.

3. Law of Independent Assortment

- Genes for different traits assort **independently** during gamete formation.
- Example: Dihybrid cross (RrYy x RrYy):
 - Phenotypic ratio in F₂ = 9:3:3:1 (round yellow : round green : wrinkled yellow : wrinkled green).

Experimental Basis

- Mendel deduced laws by analyzing large populations of pea hybrids.
- Used Punnett square logic (though not formalized until later).

♦ Mnemonics **♀**

- Laws = "DSA"
 - o **D**ominance
 - Segregation
 - Assortment (independent)

Exam Capsule @

- **Dominance** → one allele masks another (3:1).
- **Segregation** → alleles separate during gamete formation (1:2:1).
- Independent Assortment → different traits assort independently (9:3:3:1).

• Basis of classical Mendelian genetics.

Cheat Sheet 5 - Monohybrid Cross (Law of Segregation)

Definition

- A genetic cross involving a single pair of contrasting traits.
- Demonstrates Law of Segregation (Purity of Gametes).

Example: Stem Height in Pea

- Parent (P): Tall (TT) × Dwarf (tt).
- **F**₁ **Generation:** All Tall (Tt) → dominance shown.
- F₂ Generation (Tt × Tt):

Gametes T t

T TT Tt

t Tt tt

• Genotypes: 1 TT: 2 Tt: 1 tt

• Phenotypes: 3 Tall: 1 Dwarf

Ratios

• Phenotypic ratio: 3:1

• Genotypic ratio: 1:2:1

Law of Segregation (Purity of Gametes)

- Two alleles of a gene segregate during gamete formation.
- Each gamete carries only one allele.
- Fusion during fertilization restores the diploid condition.

Significance

- Explains dominance & recessiveness.
- Demonstrates predictable ratios in inheritance.
- Basis for genetic probability (Punnett square).

♦ Mnemonics ♀

• Monohybrid = "Mono Trait, Mendel's 3:1"

Exam Capsule

- Monohybrid cross = one trait studied.
- F₁ = uniform (all heterozygous, dominant phenotype).
- F₂ = 3:1 phenotypic, 1:2:1 genotypic ratio.
- Validates Law of Segregation.

Cheat Sheet 6 - Dihybrid Cross (Law of Independent Assortment) # +

Definition

- A genetic cross involving two pairs of contrasting traits.
- Demonstrates Law of Independent Assortment.

Example: Seed Shape & Color in Pea

- Parent (P): Round Yellow (RRYY) × Wrinkled Green (rryy).
- **F**₁ **Generation**: All Round Yellow (RrYy).
- F₂ Generation (RrYy × RrYy):

Gametes: RY, Ry, rY, ry.

Punnett Square → produces 16 combinations.

F₂ Results (Phenotypic Ratio)

- 9 Round Yellow
- 3 Round Green
- 3 Wrinkled Yellow
- 1 Wrinkled Green

Ratio = 9:3:3:1

Explanation of Law

- Alleles of different traits segregate independently during gamete formation.
- Thus, inheritance of one trait (seed shape) does not affect another (seed color).

Significance

- Explains recombination & variation.
- Basis of modern independent assortment concept.
- Genetic linkage = exception (genes on same chromosome).

♦ Mnemonics ♀

Dihybrid Ratio → "9 + 3 + 3 + 1 = Sweet Sixteen" (16 combinations in Punnett square).

Exam Capsule

- Dihybrid cross = two traits studied simultaneously.
- F_2 ratio = **9:3:3:1**.
- Demonstrates independent assortment of alleles.
- Explains recombination & genetic diversity.

☐ Cheat Sheet 7 – Incomplete Dominance �� 🖫

Definition

 Incomplete dominance = a condition where neither allele is completely dominant, and the heterozygote shows an intermediate phenotype.

♦ Key Example: Snapdragon (*Antirrhinum majus*) / Mirabilis jalapa (Four O' Clock Plant)

- Parent (P): Red (RR) × White (rr).
- **F**₁ **Generation:** All Pink (Rr) → intermediate trait.
- F₂ Generation (Rr × Rr):
 - o 1 Red (RR): 2 Pink (Rr): 1 White (rr).

Ratios

- Phenotypic ratio: 1:2:1
- Genotypic ratio: 1:2:1

• Here, phenotype and genotype ratios are the same (unlike Mendel's 3:1).

Other Examples

- Andalusian fowl → blue feather color (intermediate of black × white).
- Humans → wavy hair (intermediate of curly x straight).

Significance

- Shows **blending of traits** in heterozygotes.
- Demonstrates that dominance is not universal.
- Important in plant/animal breeding for new phenotypes.

♦ Mnemonics ♀

• Incomplete dominance = "Pink Rule" ∰ (red + white → pink).

Exam Capsule @

- Incomplete dominance = heterozygote shows intermediate phenotype.
- Example: Red × White Snapdragon → Pink F₁.
- F₂ ratio = **1:2:1** (both phenotype & genotype).
- Significance → introduces variation, breaks strict dominance.

☐ Cheat Sheet 8 – Codominance □

Definition

• **Codominance** = both alleles in a heterozygote are **fully expressed**, and the phenotype shows **both traits simultaneously** (not blended).

Key Example: Human ABO Blood Group

- Gene I has three alleles: IA, IB, i.
- IA and IB are codominant; both are expressed in heterozygous IAIB.
- Phenotype → AB blood group (both A & B antigens on RBC surface).
- · Genotypes:
 - IAIA / IAi → Blood group A
 - o IBIB / IBi → Blood group B

- o IAIB → Blood group AB (codominant expression)
- \circ ii \rightarrow Blood group O

Other Examples

- **Erminette fowl** → black (BB) × white (WW) → BW (checkered/erminette feathers, both black & white visible).
- Roan cattle → red × white coat → roan (both red & white hairs present).

♦ Differences: Incomplete Dominance vs Codominance

Feature	Incomplete Dominance	Codominance
Expression	Blended, intermediate	Both traits expressed equally
III-xamble I	Snapdragon (red × white → pink)	ABO blood group, roan cattle
Ratio (F ₂)	11.7.1 (same deno/phenotype)	1:2:1 (but phenotype shows both traits, not blended)

Significance

- Demonstrates that dominance is not always absolute.
- Expands understanding of inheritance beyond Mendelian laws.

♦ Mnemonics ♀

• Codominance = "Co-Exist" → both alleles visible together.

Exam Capsule

- Codominance = both alleles expressed in heterozygotes.
- Classic example: AB blood group (IAIB).
- Also seen in roan cattle, erminette fowl.
- Different from incomplete dominance (which shows blending).

Cheat Sheet 9 - Multiple Alleles □

Definition

• When a gene has **more than two allelic forms** in a population.

 A single individual still carries only two alleles (diploid), but species collectively has many options.

♦ Classic Example: ABO Blood Group in Humans

- Controlled by I gene with three alleles: IA, IB, i.
- IA \rightarrow A antigen, IB \rightarrow B antigen, i \rightarrow no antigen.
- IA and IB are codominant; i is recessive.
- Genotypes & Phenotypes:
 - \circ IAIA / IAi \rightarrow Group A
 - \circ IBIB / IBi \rightarrow Group B
 - o IAIB → Group AB (codominance)
 - \circ ii \rightarrow Group O

Example 2: Coat Color in Rabbits

- Controlled by a gene with **four alleles**: C > cch > ch > c.
 - o C = full color.
 - o cch = chinchilla.
 - o ch = Himalayan.
 - \circ c = albino.
- Shows hierarchy of dominance (C > cch > ch > c).

Example 3: Eye Color in Drosophila

• Multiple alleles produce variations beyond red & white (e.g., eosin, apricot, etc.).

Significance

- Explains wide variation in traits within populations.
- Important in blood transfusion, animal breeding, evolution.

♦ Mnemonics ♀

• Multiple Alleles = "More than Mendel's Two".

Exam Capsule

- Multiple alleles = more than two forms of a gene in population.
- Individual carries only two at a time.
- Examples: ABO blood group (IA, IB, i), rabbit coat color (C, cch, ch, c), Drosophila eye color.

Definition

- A trait controlled by **two or more genes (polygenes)**, each contributing **additively** to the phenotype.
- Produces continuous variation (spectrum, not discrete categories).
- Unlike Mendelian traits (tall/dwarf), polygenic traits show gradations.

Examples

1. Human Skin Color

- o Controlled by at least 3 gene pairs.
- \circ Each dominant allele contributes pigment \rightarrow more dominants = darker skin.
- Phenotypes form a gradient from very light → very dark.

2. Human Height

- Controlled by many genes.
- o Population shows a **bell-shaped distribution**.

3. Eye Color in Humans

- o Controlled by multiple loci.
- o Produces a range (blue, green, hazel, brown, black).

4. Kernel Color in Wheat

 Red × White → intermediate shades depending on number of dominant alleles.

Features

- Additive effect of alleles.
- No dominance/recessive (each allele contributes partially).
- Continuous variation (quantitative traits).
- Environmental factors often influence phenotype.

Difference: Monogenic vs Polygenic

Feature Monogenic Polygenic

Genes One Multiple

Variation Discontinuous (e.g., tall/dwarf) Continuous (e.g., height)

Ratios Simple Mendelian (3:1, 9:3:3:1) Quantitative distribution

Example Pea seed shape Human height

♦ Mnemonics ♀

Polygenic = "Many Genes, Many Shades".

Exam Capsule @

- Polygenic inheritance = traits controlled by **multiple genes** with **additive effects**.
- Results in **continuous variation** (skin color, height, eye color).
- Different from Mendelian (monogenic) traits which show discrete classes.

E Cheat Sheet 11 - Significance of Non-Mendelian Inheritance ♥□

Definition

- **Non-Mendelian inheritance** = patterns of inheritance that do not follow Mendel's simple dominant—recessive ratios.
- Includes: incomplete dominance, codominance, multiple alleles, polygenic traits, cytoplasmic inheritance, epistasis, pleiotropy.

♦ Types & Importance

- 1. Incomplete Dominance
- Produces intermediate phenotypes (e.g., pink flowers in *Mirabilis*).
- Significance → new variations beyond Mendel's strict ratios.
- 2. Codominance
- Both alleles expressed equally (e.g., AB blood group).

- Important in medicine (blood transfusions).
- 3. Multiple Alleles
- Expands diversity (e.g., rabbit coat color, ABO system).
- Key in genetic counseling & transfusion biology.
- 4. Polygenic Inheritance
- Explains continuous variation (skin color, height).
- Useful in plant/animal breeding, evolution studies.
- 5. Cytoplasmic (Extranuclear) Inheritance
- Traits inherited via **mitochondria/chloroplasts** (e.g., variegated leaves, maternal inheritance).
- Significant in cytoplasmic male sterility (CMS) used in hybrid crops.
- 6. Pleiotropy & Epistasis
- One gene → multiple traits (pleiotropy, e.g., sickle cell).
- One gene masks another (epistasis, e.g., coat color in mice).
- Important in disease genetics & biotechnology.

Evolutionary & Applied Significance

- Increases genetic variation → raw material for natural selection.
- Explains complex human traits & diseases (diabetes, hypertension).
- Basis of quantitative genetics → agriculture, breeding programs.
- Medical genetics → understanding inheritance of multifactorial disorders.

♦ Mnemonics ♀

- Non-Mendelian = "I Can Make People Curious"
 - Incomplete dominance
 - Codominance
 - Multiple alleles
 - Polygenic traits
 - Cytoplasmic inheritance

Exam Capsule @

• Non-Mendelian inheritance = patterns beyond Mendel's laws.

- Includes incomplete dominance, codominance, multiple alleles, polygenes, extranuclear inheritance.
- Explains continuous variation, complex traits & diseases.
- Crucial in medicine, agriculture, evolution & biotechnology.