E Cheat Sheet 1 – Gene Interaction (Definition & Types) □ Ø

Definition

- **Gene interaction** = when two or more **non-allelic genes** influence a single trait.
- Modifies the typical **Mendelian ratios (3:1, 9:3:3:1)** into altered ratios.
- Explains why many traits don't follow simple Mendelian laws.

Types of Gene Interactions

1. Complementary Genes

- o Two genes together produce a new trait.
- o Ratio = **9:7**.
- o Example: Flower color in sweet pea (Lathyrus odoratus).

2. Epistasis

- o One gene masks/modifies the effect of another non-allelic gene.
- o **Recessive epistasis** (9:3:4) e.g., coat color in mice.
- o **Dominant epistasis** (12:3:1) e.g., fruit color in summer squash.

3. **Duplicate Genes**

- Either gene alone can produce the trait.
- o Ratio = **15:1**.
- Example: Leaf shape in shepherd's purse (Capsella bursa-pastoris).

4. Duplicate Genes with Cumulative Effect

- o Two genes contribute additively.
- Ratio = 9:6:1.
- Example: Grain color in wheat.

5. Polymeric Gene Interaction

More than one gene produces a similar phenotype with cumulative effect.

6. Modifier & Suppressor Genes

- Modifier genes → alter the effect of other genes quantitatively.
- Suppressor genes → inhibit expression of another gene.

Key Ratios (Non-Mendelian)

- Complementary → 9:7
- Recessive Epistasis → 9:3:4

- Dominant Epistasis → 12:3:1
- Duplicate → 15:1
- Duplicate with cumulative effect → 9:6:1

♦ Mnemonics ♀

- "Cool Elephants Don't Dance Properly" 📳
 - o Complementary (9:7)
 - Epistasis (9:3:4 / 12:3:1)
 - Duplicate (15:1)
 - Duplicate cumulative (9:6:1)
 - Polymeric

Exam Capsule

- Gene interaction = non-allelic genes modifying a trait.
- Produces **modified ratios** (9:7, 12:3:1, 9:3:4, 15:1, 9:6:1).
- Includes complementary genes, epistasis, duplicate genes, polymeric effects, and modifiers.

E Cheat Sheet 2 – Complementary Gene Interaction (9:7 Ratio) ∰□

Definition

- Complementary gene interaction occurs when two different non-allelic dominant genes are required together to produce a particular trait.
- If either gene is absent (homozygous recessive), the trait is not expressed.

Classic Example: Flower Color in Sweet Pea (Lathyrus odoratus)

- Two genes: C and P.
- **C** = provides substrate; **P** = provides enzyme to convert it into pigment.
- Presence of both dominant alleles (C_P_) → purple flowers.
- Any recessive combination (ccP , C pp, ccpp) → white flowers.

♦ F₂ Cross (CcPp × CcPp)

- Gametes: CP, Cp, cP, cp.
- Resulting phenotypes:

Combination	Phenotype
C_P_ (9)	Purple flowers
ccP_, C_pp, ccpp (7)	White flowers

• Phenotypic ratio = 9 Purple : 7 White

Key Features

- Both genes are **essential** for trait expression.
- Lack of one gene \rightarrow metabolic block \rightarrow no pigment.
- Example of complementary action.

Other Examples

- Kernel color in maize.
- Fruit shape in gourds.

♦ Mnemonics ♀

• Complementary = "Both Needed" → like pen & ink together to write.

Exam Capsule

- Complementary genes = **two dominant alleles required together** for expression.
- Ratio = **9:7** in F₂ generation.
- Example: Purple flower in sweet pea requires C & P genes.

☐ Cheat Sheet 3 – Epistasis (Dominant & Recessive) ☐ ③

Definition

- **Epistasis** = interaction where one gene **masks or modifies** the expression of another non-allelic gene.
- The masking gene = **epistatic**; the gene being masked = **hypostatic**.

♦ 1. Recessive Epistasis (9:3:4 ratio)

- Trait expression masked when one gene is homozygous recessive.
- Example: Coat color in mice
 - o Gene C = pigment production, Gene A = pigment distribution.
 - \circ C_A_ \rightarrow agouti
 - o ccA_ or ccnn → albino (no pigment)
 - $\circ \quad \textbf{C}_\textbf{aa} \to \textbf{black}$
 - o Ratio = 9 agouti : 3 black : 4 albino

2. Dominant Epistasis (12:3:1 ratio)

- A single **dominant allele** of one gene masks the expression of another.
- Example: Fruit color in summer squash
 - o Gene W = inhibits pigment (white color, epistatic).
 - o Gene Y = yellow pigment if ww.
 - $\circ \quad \textbf{W}__ \to \textbf{white}$
 - $\circ \quad wwY_ \to yellow$
 - $\circ \quad wwyy \to green$
 - o Ratio = 12 white : 3 yellow : 1 green

Key Points

- Epistasis modifies classical Mendelian dihybrid ratio (9:3:3:1).
- Types:
 - o Recessive epistasis (9:3:4)
 - Dominant epistasis (12:3:1)
 - Other modified ratios also possible (13:3, 15:1 etc.).

Mnemonics

- Recessive Epistasis = "4 whites" (9:3:4).
- Dominant Epistasis = "Dozen whites" (12:3:1).

Exam Capsule @

Epistasis = one gene masks another.

- Recessive epistasis → 9:3:4 (mice coat color).
- Dominant epistasis → 12:3:1 (squash fruit color).
- Shows gene interaction beyond simple dominance.

☐ Cheat Sheet 4 – Duplicate Genes with Cumulative Effect (9:6:1 Ratio) ���

Definition

- **Duplicate genes with cumulative effect** = when two non-allelic dominant genes contribute **additively** to a trait.
- Presence of **both dominants** gives a distinct phenotype; presence of only one gives an intermediate; absence of both gives another phenotype.

♦ Classic Example: Grain Color in Wheat ◀

- Genes: A and B.
- **A_B_** → **dark red** (both dominants contribute → cumulative).
- A_bb or aaB_ → light red (one dominant present).
- aabb → white (no dominant alleles).

♦ F₂ Cross (AaBb × AaBb)

- Phenotypes:
 - \circ 9 A_B_ \rightarrow Dark Red
 - o 6 A_bb or aaB_ → Light Red
 - \circ 1 aabb \rightarrow White
- Phenotypic ratio = 9:6:1

Key Features

- Both dominant genes act independently but additively.
- Intermediate phenotype appears when only one dominant is present.
- Example of quantitative modification.

Other Examples

· Fruit shape in gourds.

• Kernel color in maize (similar cumulative effect).

♦ Mnemonics ♀

- "Duplicate + Together = Strong (Dark)"
- Both dominants → strong effect (dark red).
- One dominant → weaker effect (light red).
- None → no effect (white).

Exam Capsule

- Duplicate genes with cumulative effect = two genes contribute additively.
- Ratio = **9:6:1**.
- Example: Wheat grain color (dark red, light red, white).
- Shows quantitative gene interaction.

Cheat Sheet 5 – Duplicate Genes without Cumulative Effect (15:1 Ratio) 🚏

Definition

- **Duplicate genes without cumulative effect** = when two different non-allelic dominant genes produce the **same phenotype independently**.
- Presence of either dominant is enough; both together do not enhance the effect.

Classic Example: Capsella (Shepherd's Purse) Seed Shape

- Genes: A and B.
- A_B_ → triangular seeds.
- A_bb → triangular seeds.
- aaB_ → triangular seeds.
- aabb → ovoid seeds.

♦ F₂ Cross (AaBb × AaBb)

- Phenotypes:
 - o 15 triangular (A_B_, A_bb, aaB_)
 - 1 ovoid (aabb)

Phenotypic ratio = 15:1

Key Features

- Either dominant allele alone produces same trait.
- Double dominant does not change or add to phenotype.
- Only when **both genes recessive** → alternate phenotype appears.

Other Examples

- Fruit shape in gourds.
- Resistance to certain plant pathogens.

♦ Mnemonics ♀

• **Duplicate = "One is enough"** → 15 dominants vs 1 recessive.

Exam Capsule

- Duplicate genes without cumulative effect = **dominant alleles produce same phenotype**.
- Ratio = **15:1** in F_2 .
- Example: Shepherd's purse seed shape (triangular vs ovoid).
- Shows functional redundancy in genes.

☐ Cheat Sheet 6 – Polymeric Gene Interaction □

Definition

- Polymeric interaction occurs when two or more non-allelic dominant genes influence the same trait in a similar way.
- The combined effect of genes is greater than their individual effects.
- Often contributes to quantitative inheritance.

Example: Fruit Shape in Cucurbits (Gourds)

- Genes: A and B.
- A_B_ → disc-shaped fruit (new phenotype due to polymeric effect).
- A_bb or aaB_ → spherical fruit.
- aabb → long fruit.

♦ F₂ Cross (AaBb × AaBb)

• Phenotypic ratio = 9 disc : 6 spherical : 1 long

Features

- Interaction of genes gives rise to a novel phenotype.
- Both genes act **synergistically** to modify expression.
- Distinct from duplicate/cumulative because it produces a **new trait**, not just enhanced intensity.

Other Examples

- Kernel texture in maize.
- Some cases of flower color modification.

♦ Mnemonics ♀

 Polymeric = "Partners Produce a Phenotype" → both dominants together = new trait.

Exam Capsule

- Polymeric interaction = genes act together to produce **new phenotype**.
- Ratio = **9:6:1** (disc, spherical, long fruits in gourds).
- Shows synergistic gene action.

$\blacksquare \ \, \textbf{Cheat Sheet 7 - Pleiotropy (One Gene} \rightarrow \textbf{Multiple Effects)} \ \square$

Definition

- Pleiotropy = condition where one gene influences multiple traits.
- Opposite of polygenic inheritance (where many genes control one trait).

Key Examples

- 1. Sickle-Cell Anemia (Humans)
- Mutation in β -globin gene \rightarrow abnormal hemoglobin (HbS).
- Multiple effects:
 - Sickled RBC shape.
 - Anemia due to hemolysis.
 - o Resistance to malaria.
- Single mutation affects blood morphology, physiology, and disease resistance.

2. Phenylketonuria (PKU)

- Mutation in gene encoding enzyme phenylalanine hydroxylase.
- Multiple effects:
 - o Accumulation of phenylalanine → mental retardation.
 - o Light skin/hair (reduced melanin).
 - Neurological issues.

3. Marfan Syndrome

- Mutation in fibrillin-1 gene.
- Effects: long limbs, lens dislocation, cardiovascular abnormalities.

Features

- One gene → multiple, often unrelated phenotypes.
- Seen in both plants and animals.
- Important in human genetic diseases.

♦ Mnemonics ♀

• Pleiotropy = "Plenty of Traits from One Gene".

Exam Capsule @

- Pleiotropy = one gene → multiple effects.
- Examples: Sickle-cell anemia, PKU, Marfan syndrome.
- Contrast: Polygenic inheritance = many genes → one trait.

E Cheat Sheet 8 - Lethal Genes (2:1 Ratio) ₽□

Definition

- **Lethal genes** = genes that cause **death of the organism** when present in certain genotypes.
- May be dominant or recessive.
- Alter normal Mendelian ratios (e.g., 3:1 → 2:1).

Types

1. Recessive Lethal Genes

- Cause death only in homozygous recessive condition.
- Example: Yellow coat in mice (AY allele)
 - Cross: AY A × AY A →
 - AY AY = lethal (death).
 - AY A = yellow.
 - o AA = agouti.
 - o Ratio: 2 yellow: 1 agouti (not 3:1).

2. Dominant Lethal Genes

- Cause death even in heterozygous condition.
- Rare, as they are usually eliminated from populations.
- Example: **Huntington's disease in humans** (late onset → persists).

Other Examples

- Manx cat: tailless condition due to lethal homozygous state.
- Creeper fowl: homozygotes die; heterozygotes show short legs.

Key Features

- Lethal genes distort expected Mendelian ratios.
- Can be embryonic lethal → death before birth.
- Help explain absence of certain genotypes in offspring.

♦ Mnemonics ♀

Lethal = "Lost in Ratio" → 3:1 changes to 2:1.

Exam Capsule

- Lethal genes cause organism death in specific genotypes.
- Recessive lethal → 2:1 ratio (mice coat color).
- **Dominant lethal** → rare, e.g., Huntington's disease.
- Seen in mice, cats, fowls, humans.

E Cheat Sheet 9 - Modifier & Suppressor Genes □□

Definition

- Genes that **modify or suppress the expression** of other genes without being allelic.
- Important in **fine-tuning traits** and in explaining non-Mendelian inheritance.

♦ 1. Modifier Genes

- Alter the quantitative effect of another gene.
- Do not mask completely but increase or decrease intensity of expression.
- Example: **Skin color in humans**
 - Multiple modifying genes influence degree of pigmentation.
- Example: In mice, modifier genes alter coat color intensity.

2. Suppressor Genes

- Genes that **inhibit or silence** the effect of another gene.
- Can restore normal phenotype by suppressing a mutant gene.
- Example: In *Drosophila*, suppressor genes can silence mutations affecting eye color.
- Example: In humans, some suppressor genes control oncogenes → preventing cancer.

Key Features

- Both act in gene interaction but in different ways:
 - Modifier = "volume control" (adjust intensity).
 - Suppressor = "mute button" (turn off expression).

Significance

- Explain variable expressivity of traits.
- Important in genetic diseases, cancer biology, evolution.
- Provide buffering against harmful mutations.

♦ Mnemonics ♀

- Modifier = "More or Less"
- Suppressor = "Stop Signal"

Exam Capsule

- Modifier genes → alter effect of another gene quantitatively.
- Suppressor genes → inhibit the action of another gene.
- Both explain deviations from Mendelian ratios.
- Important in phenotypic variation & disease regulation.

☐ Cheat Sheet 10 – Cytoplasmic Inheritance (Extranuclear / Maternal Inheritance)

Definition

- Cytoplasmic inheritance = transmission of traits through DNA present in organelles (mitochondria, chloroplasts) rather than nuclear genes.
- Also called extranuclear inheritance or maternal inheritance.

Key Features

- DNA found in mitochondria & chloroplasts (mtDNA, cpDNA).
- Inherited **maternally** in most organisms (zygote cytoplasm from egg).
- Follows non-Mendelian ratios.
- Mutations in these organelles can affect energy metabolism & pigmentation.

Examples

- 1. Leaf Variegation in *Mirabilis jalapa* (Four o'clock plant)
- Green leaves → normal chloroplasts.
- White leaves → defective chloroplasts.
- Variegated leaves → mixture.
- Inheritance depends on cytoplasm of ovule (maternal).
- 2. Male Sterility in Plants (CMS Cytoplasmic Male Sterility)
- Important in hybrid seed production.
- · Controlled by mitochondrial genes.
- 3. Mitochondrial Diseases in Humans
- Leber's Hereditary Optic Neuropathy (LHON).
- Kearns–Sayre syndrome.
- · All inherited maternally.

Significance

- Explains inheritance patterns not fitting Mendelian laws.
- Critical in plant breeding (hybrid production).
- Helps understand human metabolic diseases.
- Basis of mitochondrial genetics in evolution (endosymbiotic theory).

♦ Mnemonics ♀

• Cytoplasmic inheritance = "Comes from the Mother"

Exam Capsule

- Traits inherited via mitochondrial & chloroplast DNA.
- Maternally inherited (egg cytoplasm).
- Examples: Leaf variegation in *Mirabilis*, CMS in plants, human mitochondrial diseases.
- Explains non-Mendelian inheritance.

El Cheat Sheet 11 – Extra Non-Mendelian Ratios (Modified Mendelian Ratios)

Introduction

- In classical Mendelian genetics, dihybrid cross produces 9:3:3:1 ratio.
- Gene interactions modify this into **non-Mendelian ratios** like 9:7, 12:3:1, 9:3:4, 15:1, etc.
- Some special ratios are also observed.

Examples of Modified Ratios

- 1. **13:3 Ratio** Suppressor Gene Action
- One gene suppresses the expression of another.
- Example: Feather color in fowl.
 - o Dominant allele at one locus suppresses pigment production.
 - Phenotypic ratio: 13 white: 3 colored.
- 2. **9:6:1 Ratio** Cumulative Effect (already discussed in wheat kernel color)
- Two genes contribute additively → intermediate phenotype appears when only one gene is active.
- Example: Fruit shape in gourds → disc : spherical : long.
- 3. 9:3:3:1 (Mendel's original dihybrid ratio)
- Still observed when no gene interaction is present.
- Serves as baseline to identify modifications.

4. Other Ratios

- 9:6:1 → cumulative interaction (wheat color).
- 9:3:4 → recessive epistasis (mice coat color).
- 12:3:1 → dominant epistasis (squash color).
- 15:1 → duplicate genes (shepherd's purse).

Significance

- These ratios demonstrate gene interactions beyond Mendelian laws.
- Crucial in plant/animal breeding to predict unexpected outcomes.

• Show that multiple genes often work in networks, not isolation.

♦ Mnemonics **♀**

- "Funny Ratios Tell Genetic Stories" 🦁
 - 13:3 = Suppressor
 - o 9:6:1 = Cumulative
 - 12:3:1 = Dominant Epistasis
 - o 9:3:4 = Recessive Epistasis
 - 15:1 = Duplicate

Exam Capsule

- Modified ratios arise due to gene interactions.
- 13:3 (suppressor genes, fowl feather color).
- 9:6:1 (cumulative, gourds/wheat).
- Classical 9:3:3:1 = baseline.
- Ratios are key evidence for **non-Mendelian inheritance patterns**.