E Cheat Sheet 1 - Plant Breeding: Definition, Scope & Aims 🚏

Definition

- **Plant Breeding** = the **art and science of improving plants** by altering their heredity for human benefit.
- Combines **traditional methods** (selection, hybridization) and **modern tools** (biotechnology, genetic engineering).

Scope of Plant Breeding

- **Yield improvement** → e.g., high-yielding wheat, rice.
- **Resistance to stresses** → biotic (disease, pests) & abiotic (drought, salinity).
- Quality traits → protein-rich pulses, vitamin-enriched rice (Golden rice).
- Adaptability → varieties suitable for diverse soils & climates.
- Industrial use → cotton (fiber), sugarcane (sugar), oilseeds.
- **Conservation** → preservation of crop genetic resources.

Aims of Plant Breeding

- 1. High yield.
- 2. Biotic stress resistance (diseases, insects).
- 3. Abiotic stress resistance (drought, heat, salt).
- 4. Improved quality (nutrition, flavor, storage).
- 5. Early maturity (short-duration crops).
- 6. Better adaptability (wide cultivation).
- 7. Economic traits (fiber length, oil %, sugar content).

Domestication

- Conversion of wild plants into cultivated crops.
- Selected for larger seeds, non-shattering, uniform maturity.
- Examples:
 - Wheat & barley (Fertile Crescent).
 - Maize (Mexico).
 - o Rice (India/China).
 - Cotton (India, America).

Plant Introduction

- Transfer of plant varieties across regions.
- Intercontinental:
 - o Groundnut (South America → India).
 - o Rubber (Brazil → Asia).
 - o Mexican wheat (to India during Green Revolution).
- Interstate: crops moved across Indian states.
- Requires acclimatization for success.

♦ Mnemonics **♀**

- Aims of Plant Breeding = "Y-QEAR"
 - Yield
 - o Quality
 - Earliness
 - Adaptability
 - o Resistance

Exam Capsule @

- Plant breeding = genetic improvement of crops.
- Scope: productivity, resistance, quality, adaptability.
- Aims: yield ↑, quality ↑, stress resistance ↑, maturity ↓.
- Domestication & plant introduction supply raw material for breeding.

El Cheat Sheet 2 – Agencies & Risks in Plant Breeding 💼 🖫

Major Agencies in India

- 1. IARI (Indian Agricultural Research Institute, New Delhi)
 - o "Pusa Institute."
 - o Pioneered crop improvement research in India.
 - o Key role in Green Revolution (wheat & rice).
- 2. FRI (Forest Research Institute, Dehradun)

Works on forest trees & medicinal plants.

3. BSI (Botanical Survey of India, Kolkata)

- Maintains national herbarium & plant biodiversity records.
- Helps in documentation of wild relatives of crops.

4. ICAR (Indian Council of Agricultural Research)

- o Apex body for agricultural education & research.
- o Coordinates breeding programs across India.

5. NSC (National Seeds Corporation)

Produces & distributes high-quality breeder & foundation seeds.

6. SSC/SSCA (State Seed Corporations/State Seed Certification Agencies)

o Handle certification, multiplication & distribution at the state level.

Risks of Plant Introduction

• Along with useful traits, undesirable traits may spread:

1. Diseases

o Example: Late blight of potato introduced to Europe.

2. Pests

Example: Cotton boll weevil in America.

3. Weeds

 Example: Parthenium hysterophorus (congress grass) introduced accidentally in India.

Precautions

- Quarantine checks at ports.
- Screening & acclimatization before large-scale introduction.
- Controlled trials in experimental fields.

Mnemonics

- Agencies → "I Fix Better National Seeds"
 - o IARI
 - o **F**RI
 - o **B**SI

- NSC
- SSC

Exam Capsule

- Agencies: IARI, FRI, BSI, ICAR, NSC, SSC.
- Risks: introduction may bring diseases, pests, weeds.
- Example: Parthenium weed, late blight of potato.
- Solution = quarantine + acclimatization.

☐ Cheat Sheet 3 – Steps in Plant Breeding & Selection Methods

Steps in Plant Breeding

1. Collection of Variability

o Germplasm collection from native & exotic sources.

2. Evaluation & Characterization

o Study useful traits (yield, disease resistance).

3. Selection of Parents

Best varieties chosen for hybridization.

4. Hybridization

Crossing of selected parents.

5. Selection in Progeny

o Desirable recombinants selected.

6. Testing & Evaluation

Multi-location trials for adaptability.

7. Release & Multiplication

Superior variety released for cultivation.

Selection Methods

1. Mass Selection

- Plants with desirable traits chosen & seeds bulked.
- o Merits: simple, cheap, maintains variability.
- Demerits: less uniform, not useful for self-pollinated crops.
- o Example: Improvement in wheat, maize.

2. Pure Line Selection

- Selection from progeny of a single homozygous plant.
- Produces highly uniform varieties.
- Merits: uniformity, stability.
- o Demerits: narrow genetic base, less adaptable.
- Example: Many improved rice & wheat varieties.

3. Clonal Selection

- Used for vegetatively propagated crops.
- o Superior plants cloned → propagated by cuttings, tubers, grafts.
- o Merits: uniformity, easy to maintain.
- Demerits: no new variation.
- o Example: Potato, banana, sugarcane, mango.

Mnemonics

- Steps = "Cool Elephants Select Happy Small Tame Rabbits" 🖺 😩
 - Collection → Evaluation → Selection → Hybridization → Selection → Testing
 → Release

Exam Capsule @

- Plant breeding steps = collection → evaluation → selection → hybridization → testing → release.
- · Selection methods:
 - Mass selection (bulk seeds).
 - Pure line (single homozygous line).
 - Clonal (vegetatively propagated crops).

🖹 Cheat Sheet 4 – Hybridization Basics 🏖 🌮

Definition

- Hybridization = process of crossing genetically different plants to combine desirable traits into one genotype.
- Produces hybrids with improved yield, resistance, or quality.

Objectives of Hybridization

- 1. Combine traits of two or more parents.
- 2. Develop disease- and pest-resistant crops.
- 3. Improve yield & quality (nutrition, fiber, oil content).
- 4. Introduce earliness, adaptability, stress tolerance.
- 5. Create novel variations for further selection.

Basic Steps in Hybridization

- 1. **Selection of Parents** superior plants chosen.
- 2. **Emasculation** removal of stamens from bisexual flowers before anther dehiscence (to prevent self-pollination).
- 3. **Bagging** covering emasculated flowers with paper/plastic bags.
- 4. **Artificial Pollination** transfer of pollen from chosen male parent.
- 5. **Re-bagging** to prevent contamination.
- 6. F₁ Generation shows hybrid vigor (heterosis).
- 7. **F₂ Generation** segregation, recombination, variation.

Types of Hybridization (Basic Classification)

- Intraspecific between varieties of same species (wheat x wheat).
- Interspecific between two species of same genus (sugarcane).
- **Intergeneric** between different genera (triticale = wheat x rye).

Features of Hybrids

- **F**₁ **generation** → uniform, vigorous.
- **F₂ generation** → shows segregation (useful for selection).
- Commercial hybrids often maintained only at F₁ level (e.g., maize).

Mnemonics

- Hybridization Steps = "Every Boy Always Re-bags Flowers"
 - Emasculation
 - Bagging
 - Artificial pollination
 - Re-bagging

Exam Capsule

- Hybridization = crossing genetically different plants.
- Steps: emasculation \to bagging \to pollination \to re-bagging \to F $_1$ \to F $_2$.
- Objectives: combine yield, resistance, adaptability, quality.
- Produces hybrids with heterosis in F₁ and variation in F₂.

☐ Cheat Sheet 5 – Hybridization in Self- & Cross-Pollinated Crops

In Self-Pollinated Crops

- Aim: combine useful characters into one homozygous line.
- Common methods:

1. Pedigree Method

- Selection of superior plants in F₂.
- o Maintains pedigree record for successive generations.
- o Example: wheat, rice.

2. Bulk Method

- Large population advanced without selection up to F₅ –F₆.
- Natural selection operates.
- Selection done later.
- o Example: barley.

3. Backcross Method

- Repeated crossing with recurrent parent.
- Used for transferring a single trait (disease resistance).
- Example: wheat resistant to rust.

♦ In Cross-Pollinated Crops

- Aim: exploit heterosis (hybrid vigor).
- Methods:

1. Single Cross

- Cross between two inbred lines.
- Example: maize hybrids.

2. Double Cross

- Cross between two single crosses.
- o Produces more variability.

3. Three-Way Cross

o Cross between a single cross and another inbred line.

4. Top Cross

- o Inbred line x open-pollinated variety.
- Used for testing combining ability.

5. Synthetic Varieties

- o Produced by intercrossing several selected genotypes.
- o Example: fodder crops.

Key Differences

- **Self-pollinated crops** → methods stabilize homozygosity.
- Cross-pollinated crops → methods maintain heterozygosity & exploit heterosis.

♦ Mnemonics ♀

- Self-pollinated \rightarrow "PBB"
 - Pedigree
 - o Bulk
 - Backcross
- $\bullet \quad \text{Cross-pollinated} \to \text{``SDT-S''}$
 - o Single
 - Double
 - Three-way
 - Synthetic

Exam Capsule @

- Self-pollinated: pedigree, bulk, backcross.
- Cross-pollinated: single, double, three-way, top crosses.
- Self → stabilize lines; cross → exploit heterosis.

☐ Cheat Sheet 6 – Types of Hybridization

♦ 1. Intraspecific Hybridization

- Cross between two varieties/strains of the **same species**.
- Aim: combine desirable traits within a species.
- Example:
 - Rice variety (IR8 x Basmati).
 - Wheat high-yield x wheat rust-resistant.

2. Interspecific Hybridization

- Cross between two **different species** of the same genus.
- Produces hybrids that may be fertile or sterile.
- Example:
 - Sugarcane (Saccharum officinarum x S. spontaneum) → high sugar + hardiness.
 - o Potato (Solanum tuberosum x Solanum demissum) → late blight resistance.

3. Intergeneric Hybridization

- Cross between species of different genera.
- Often requires chromosome doubling (polyploidy) for fertility.
- Example:
 - Triticale (Triticum x Secale) → wheat x rye hybrid, combines yield + hardiness.
 - Raphanobrassica (Radish x Cabbage) Heterogeneous result, not commercially successful.

Key Outcomes

- Intraspecific: easy, stable, fertile hybrids.
- Interspecific: useful for disease resistance, stress tolerance.
- Intergeneric: novel crops, often artificial polyploids.

Mnemonics

- Types = "S-I-I"
 - Same species → Intraspecific.

- Interspecific → Different species (same genus).
- o Intergeneric → Different genera.

Exam Capsule @

- Hybridization types:
 - o Intraspecific → within species (wheat × wheat).
 - o Interspecific → between species (sugarcane).
 - o Intergeneric → between genera (triticale).
- Used to combine yield, resistance, adaptability, or novelty.

✓ That's Cheat Sheet 6.

Do you want me to continue with **Cheat Sheet 7 – Mutation Breeding (concept, mutagens, examples like Norin-10, rice, barley, chlorina tobacco)?**

You said:

continue

ChatGPT said:

Alright A Let's now go into Mutation Breeding.

Cheat Sheet 7 – Mutation Breeding 4 ?

Definition

- **Mutation breeding** = creating **new crop varieties** by artificially inducing mutations using **physical or chemical mutagens**.
- Objective: develop traits not found in natural variation (disease resistance, dwarfness, early maturity).

Mutagens Used

1. Physical Mutagens

X-rays, Gamma rays, Neutrons, UV radiation.

2. Chemical Mutagens

- EMS (Ethyl Methane Sulfonate).
- Mustard gas.
- o Sodium azide, nitrous acid.

Procedure

- 1. Select parent material.
- 2. Expose seeds/cells to mutagen.
- 3. Grow M₁ generation (mostly heterozygous).
- 4. Select mutants in M₂ generation (stable lines).
- 5. Evaluation & release.

Examples

- Norin-10 Dwarf Wheat (Japan → introduced into India during Green Revolution).
- Rice: "Sharbati Sonora," "Jagannath," "Pusa Basmati-1."
- **Barley**: disease-resistant mutants.
- Chlorina mutant in Tobacco (classic example in teaching).

Advantages

- Quick method to develop new traits.
- · Creates variability where none existed.
- Can improve both cross- and self-pollinated crops.

Disadvantages

- Most mutations harmful or sterile.
- Requires screening of huge populations.

♦ Mnemonics ♀

• Mutation = "Man-Made Magic" → New traits appear suddenly.

Exam Capsule @

- Mutation breeding = induction of mutations by radiation/chemicals.
- Mutagens: gamma rays, EMS, sodium azide.
- Examples: Norin-10 wheat, rice mutants, barley, chlorina tobacco.
- Useful for dwarfness, resistance, quality improvement.