

UNIT 1- INORGANIC CHEMISTRY

CHEMICAL PERIODICITY

1. Modern Periodic Law

Definition: The properties of elements are periodic functions of their atomic number (Z).

Basis: Atomic number (not atomic mass, as in Mendeleev).

Periodicity arises due to the repetition of similar outer electronic configurations at regular intervals.

2. Periodicity in Properties

(a) Atomic Radius

Across a Period: \downarrow decreases

Effective nuclear charge (Z_{eff}) increases \rightarrow pulls electrons closer.

Down a Group: \uparrow increases

New shells added \rightarrow size increases despite increase in Z_{eff} .

(b) Ionic Radius

Cations (positive ions): Smaller than parent atom (loss of electrons \rightarrow less repulsion, higher Z_{eff}).

Anions (negative ions): Larger than parent atom (gain of electrons \rightarrow more repulsion, lower Z_{eff}).

(c) Ionization Potential (IP / IE)

Definition: Energy required to remove the most loosely bound electron.

Across a Period: \uparrow increases (higher Z_{eff} , smaller radius).

Down a Group: \downarrow decreases (larger radius, weaker attraction). Exceptions: Be, N, Mg, P show slightly higher values due to stable half/full subshells.

(d) Electron Affinity (EA)

Definition: Energy released when an atom gains an electron.

Across a Period: \uparrow generally increases (greater Z_{eff} , easier to add e^-).

Down a Group: \downarrow decreases (larger radius, weaker attraction for extra e^-).

Exceptions: Noble gases (no EA), Be, Mg (filled s), N, P (half-filled p).

3. Effective Nuclear Charge (Z_{eff})

Definition:

Net positive charge experienced by an electron in a multi-electron atom.

Formula: $Z_{\text{eff}} = Z - S$

Where,

Z = actual nuclear charge (atomic number),

S = shielding (screening constant).

4. Slater's Rules (for finding S)

Steps:

Write electronic configuration in groups:

(1s) (2s,2p) (3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p)...

For a given electron, shielding constant S is calculated as:

Electrons in the same group (ns, np): each contributes 0.35
(except 1s, where it's 0.30).

Electrons in (n-1) shell: each contributes 0.85.

Electrons in (n-2) or lower shells: each contributes 1.00.

For d and f orbitals:

Same group \rightarrow 0.35,

All lower groups \rightarrow 1.00.

Subtract S from $Z \rightarrow$ gives Z_{eff}

Uses of Slater's Rules:

Explains trends in atomic size, ionization energy, and electron affinity.

Helps predict relative stability of orbitals.

Useful in rationalizing periodic properties and anomalies.

Property	Across Period \rightarrow	Down Group \downarrow
Atomic Radius	Decreases \downarrow	Increases \uparrow
Ionic Radius (cations)	Decreases \downarrow	Increases \uparrow
Ionic Radius (anions)	Decreases \downarrow	Increases \uparrow
Ionization Energy	Increases \uparrow	Decreases \downarrow
Electron Affinity	Increases \uparrow (with exceptions)	Decreases \downarrow

STRUCTURE AND BONDING

1. Molecular Orbitals (Homo- vs Heteronuclear)

Homonuclear molecules (e.g. H₂, O₂, N₂):

- Combination of identical AOs.
- MO diagram ordering:
- For Z < 8: $\sigma(1s) < \sigma^*(1s) < \sigma(2s) < \sigma^*(2s) < \pi(2p_x) = \pi(2p_y) < \sigma(2p_z) < \pi^*(2p_x) = \pi^*(2p_y) < \sigma^*(2p_z)$
- For Z ≥ 8: $\sigma(2p_z)$ comes **before** $\pi(2p_x), \pi(2p_y)$.
- Bond order = $\frac{1}{2}$ (bonding – antibonding electrons).
- Explains paramagnetism (e.g., O₂ has 2 unpaired electrons in π^* orbitals).

Heteronuclear molecules (e.g. CO, NO, HF):

- AOs of different atoms mix → MO energies shift toward atom with closer orbital energy.
- Polar bonds due to unequal AO contributions.

2. VSEPR Theory (Shapes of Molecules)

- Basic Rule:** Electron pairs repel → arrange to minimize repulsion.
- Electron pair geometry (AXE method):**
- A = central atom, X = bonded atoms, E = lone pairs.

Steric No.	Shape (no lone pairs)	Examples
2	Linear (180°)	BeCl ₂ , CO ₂
3	Trigonal planar (120°)	BF ₃
4	Tetrahedral (109.5°)	CH ₄
5	Trigonal bipyramidal (90°, 120°)	PCl ₅
6	Octahedral (90°)	SF ₆
7	Pentagonal bipyramidal	IF ₇

Lone pairs reduce angles due to stronger repulsion:

LP–LP > LP–BP > BP–BP.

3. Hybridization & LCAO

Linear Combination of Atomic Orbitals (LCAO):

Hybrid orbitals = combinations of s & p (and d) orbitals.

Ensures equivalent bond energies & orientations

Geometry	Hybridization	Example
Linear	sp	BeCl ₂ , CO ₂
Trigonal planar	sp ²	BF ₃ , C ₂ H ₄
Tetrahedral	sp ³	CH ₄
Trigonal bipyramidal	sp ³ d	PCl ₅
Octahedral	sp ³ d ²	SF ₆
Square planar	dsp ²	Ni(CN) ₄ ²⁻

4. Stereochemistry of Hybrid Orbitals

- sp : 2 orbitals \rightarrow 180° apart (linear).
- sp^2 : 3 orbitals \rightarrow 120° apart (planar).
- sp^3 : 4 orbitals \rightarrow 109.5° apart (tetrahedral).
- sp^3d : 5 orbitals \rightarrow 3 in plane (120°), 2 axial (90°).
- sp^3d^2 : 6 orbitals \rightarrow octahedral (90°).

5. s and p Character Calculations

General Formula:

$$\%s = (\text{no. of s orbitals} / \text{total hybrids}) \times 100$$

$$\%p = (\text{no. of p orbitals} / \text{total hybrids}) \times 100$$

Hybridization	%s	%p	Bond Nature
sp	50	50	Short, strong bonds
sp^2	33.3	66.7	Intermediate
sp^3	25	75	Long, weaker bonds
sp^3d	20	80	More p-character
sp^3d^2	16.7	83.3	Mostly p-character

Higher s-character \rightarrow shorter, stronger bond (more electronegativity).

Non-equivalent hybrids: Sometimes central atom uses different hybrids for different bonds (e.g., SF_4 has axial & equatorial bonds).

MOLECULAR ORBITAL THEORY

1. Homonuclear Diatomic Molecules (A_2)

Key Rules:

Constructed from **LCAO** (Linear Combination of Atomic Orbitals).

MO ordering depends on Z (atomic number)

For $1 \leq Z \leq 7$ ($Li_2 \rightarrow N_2$):

$$\sigma(1s) < \sigma^*(1s) < \sigma(2s) < \sigma^*(2s) < \pi(2px) = \pi(2py) < \sigma(2pz) < \pi^*(2px) = \pi^*(2py) < \sigma^*(2pz)$$

For $Z \geq 8$ ($O_2 \rightarrow Ne_2$):

$$\sigma(1s) < \sigma^*(1s) < \sigma(2s) < \sigma^*(2s) < \sigma(2pz) < \pi(2px) = \pi(2py) < \pi^*(2px) = \pi^*(2py) < \sigma^*(2pz)$$

Examples:

- H_2 (2 e⁻): BO = 1 \rightarrow stable.
- He_2 (4 e⁻): BO = 0 \rightarrow not stable.
- N_2 (14 e⁻): BO = 3 \rightarrow very stable, diamagnetic.
- O_2 (16 e⁻): BO = 2 \rightarrow paramagnetic (2 unpaired \uparrow in π^*).

2. Heteronuclear Diatomic Molecules (AB)

Key Modifications:

- AOs differ in energy → MOs are closer to the atom with lower energy orbital (more electronegative).
- Bond is polar due to unequal contribution.
- Examples:

CO: Strong bond, BO = 3. Electrons shifted toward O (χ higher).

NO (odd e⁻ molecule): BO = 2.5 → paramagnetic.

HF: H(1s) overlaps with F(2p_z) → σ bond, strongly polarized toward F.

3. Trinuclear / Triatomic Molecules (ABC or ABA)

Cases:

1. Linear molecules (CO₂, BeCl₂):

Combine 3 AOs → give 3 MOs: bonding, nonbonding, antibonding.

Example CO₂:

O 2p orbitals combine with C 2p → form σ (2p_z), π (2p_x), π (2p_y) bonding and corresponding antibonding orbitals.

Nonbonding orbitals remain localized on O atoms.

2. Bent molecules (H₂O, O₃, NO₂):

Symmetry lower than linear → mixing leads to **non-equivalent MOs**.

Example O₃ (ozone): delocalized π system (resonance).

3. Delocalized π systems:

3-atom chain: gives 3 π -MOs.

ψ_1 (bonding, all in-phase), ψ_2 (1 node), ψ_3 (antibonding, 2 nodes).

Example: O₃, CO₂ (π -system).

4. Bond Order Formula (General)

$$BO = \frac{1}{2} (N_b - N_a)$$

(N_b) = bonding electrons

(N_a) = antibonding electrons

5. Quick Reference Examples

Molecule	e ⁻ count	MO filling	BO	Magnetism
H ₂	2	$\sigma(1s)^2$	1	Dia
He ₂	4	$\sigma(1s)^2 \sigma^*(1s)^2$	0	—
Li ₂	6	$\sigma(1s)^2 \sigma^*(1s)^2 \sigma(2s)^2$	1	Dia
B ₂	10	$\dots \pi(2p_x)^1 = \pi(2p_y)^1$	1	Para (2 unpaired)
C ₂	12	$\dots \pi(2p_x)^2 = \pi(2p_y)^2$	2	Dia
N ₂	14	$\dots \sigma(2p_z)^2$	3	Dia
O ₂	16	$\dots \pi^*(2p_x)^1 = \pi^*(2p_y)^1$	2	Para
F ₂	18	$\dots \pi^*(2p_x)^2 = \pi^*(2p_y)^2$	1	Dia
Ne ₂	20	$\dots \sigma^*(2p_z)^2$	0	—