GREEN CHEMISTRY:

PRINCIPLES & CONCEPTS

Definition: Design of chemical products and processes that reduce or eliminate hazardous substances.

- 1. Prevention Better to prevent waste than treat it.
- 2. Atom Economy Maximize incorporation of all materials.
- 3. Less Hazardous Chemical Syntheses Use safer methods.
- 4. Designing Safer Chemicals Less toxicity.
- 5. Safer Solvents & Auxiliaries Avoid unnecessary use.
- 6. Energy Efficiency Run at ambient temperature & pressure.
- 7. Use of Renewable Feedstocks Prefer bio-based over fossil.
- 8. Reduce Derivatives Avoid unnecessary steps like protection/deprotection.
- 9. Catalysis Prefer catalytic reagents over stoichiometric.
- 10.Design for Degradation Break down into innocuous products.
- 11.Real-time analysis Monitor to prevent pollution.
- 12. Inherently Safer Chemistry Minimize accident potential.

Green Solvents

Aim: Reduce environmental and health impact.

- Water Non-toxic, cheap
- Ethanol Renewable bio-solvent

- Ionic liquids Low volatility
- Supercritical CO₂

Supercritical CO₂

State: CO₂ above its critical temperature (31.1°C) and pressure (73 atm).

Properties: Gas-like diffusion, liquid-like solvation.

Uses: Decaffeination of coffee, dry cleaning, polymerization.

Benefits: Non-toxic, recyclable, low environmental impact.

& Waste Minimization Techniques

- Source reduction Redesign processes to generate less waste.
- Recycle/reuse Reuse solvents, by-products.
- Process optimization Improve yields, reduce energy.
- Catalysis Less waste vs. stoichiometric reagents.
- Biodegradable materials Easier disposal.
- In-process monitoring Real-time detection of inefficiencies.

Green Catalysis

Goal: Use catalysts to improve efficiency and reduce byproducts.

- Biocatalysts Enzymes (high specificity, mild conditions)
- Heterogeneous catalysts Easier separation, reusable

• Organocatalysts – Metal-free, less toxic

Advantages: Low energy demand, fewer steps, less waste.

ENVIRONMENTAL CHEMISTRY

Scope: Study of chemical processes in air, water, soil, and living systems.

Importance: Understanding pollution and control, sustainable development, resource conservation, human and ecological health.

Renewable Energy Resources

- Solar Energy Photovoltaic cells convert sunlight to electricity.
- Wind Energy Wind turbines harness wind power.
- Hydrothermal Geothermal energy from Earth's internal heat.
- Tidal Energy Converts ocean tides into power. Predictable and clean source.

② Polymers & Plastics: Environmental Impact

Synthetic Polymers: Non-biodegradable (e.g., polyethylene, PVC)

• Accumulate in landfills

- Microplastic pollution
- Harm marine life and food chains

Solutions: Use of bioplastics, recycling, bans on single-use plastics

Pollution Effects on Human Health

- Air Pollution Respiratory diseases, asthma, cardiovascular issues
- Water Pollution Gastrointestinal diseases, heavy metal poisoning
- Soil Pollution Enters food chain, causes cancer, developmental issues
- Noise Pollution Hearing loss, stress, sleep disturbances
- Chemical Exposure Reproductive disorders, neurological problems