ORGANOMETALLIC COMPOUNDS

1. Definition & General Characteristics

Concept	Description	
Organometallic Compounds	Compounds containing at	
	least one metal—carbon (M–C)	
	bond where the carbon is part	
	of an organic group.	
Examples	Grignard reagents (RMgX),	
	Organolithium (RLi),	
	Ferrocene, Zeise's salt,	
	Wilkinson's catalyst.	
Bond Nature	Can be ionic (e.g., NaCH ₃) or	
	covalent (e.g., Ni(CO) ₄).	
Common Metals	Li, Mg, Zn, Fe, Co, Ni, Pd, Pt,	
	Ti.	

2. Synthesis of Organometallic Compounds

Method	Reaction Example
Direct combination	$2Li + R - X \rightarrow RLi + LiX$
Transmetallation	$2RLi + ZnCl2 \rightarrow R2Zn + 2LiCl$
Reduction of Metal Halide	$TiCl_4 + 4NaC_5H_5 \rightarrow$ $Ti(C_5H_5)_4 + 4NaCl$
Carbonylation	$Ni + CO \rightarrow Ni(CO)_4$ (at 50°C, 1 atm)

3. Structure & Bonding

- σ (sigma) bond: Overlap of metal orbital with sp³/sp² carbon orbital.
- π (pi) bond: Found in Zeise's salt due to π -back bonding between metal d-orbitals and alkene π^* orbitals.
- Sandwich Compounds: e.g., Ferrocene (Fe(η^5 –C₅H₅)₂) aromatic π -electron interaction stabilizes Fe²⁺ center.

Type	Example	Nature of Bond
σ-bonded	R-Mg-X	σ M–C bond
	(Grignard)	
π-complex	Zeise's salt	Metal–alkene π-
_		backbonding
η ⁵ -complex	Ferrocene	Delocalized π-bond

4. Important Reactions

Oxidative Addition: Metal oxidation state and coordination number increase by 2.

Example: Vaska's Complex $(IrCl(CO)(PPh_3)_2 + H_2 \rightarrow Ir(H)_2Cl(CO)(PPh_3)_2)$

Reductive Elimination: Reverse of oxidative addition, both decrease by 2.

Example: $Pt(IV) \rightarrow Pt(II) + R-R'$

Process	Change in Oxidation State	Coordination Number	Example
Oxidative	+2	+2	$Ir(I) \rightarrow$
Addition			Ir(III)
Reductive	-2	-2	$Pt(IV) \rightarrow$
Elimination			Pt(II)

5. Catalysis by Organometallic Compounds

Process	Catalyst	Product
Hydrogenation	Wilkinson's	Alkane
	(Rh)	
Hydroformylation	Co/Rh	Aldehyde
	complexes	
Monsanto	$RhI_2(CO)_2^-$	Acetic acid
Process		
Wacker Process	PdCl ₂ /CuCl ₂	Acetaldehyde
Ziegler–Natta	TiCl ₄ +	Polyethylene/Polypropylene
Polymerization	AlEt ₃	

6. Quick Revision Points

• Organometallic bond: M–C σ or π type

• Ferrocene: Sandwich complex

• Zeise's salt: π -alkene complex

Oxidative addition → Oxidation state ↑

• Reductive elimination → Oxidation state ↓

- Wilkinson's catalyst → Hydrogenation
- Monsanto → Acetic acid
- Wacker → Acetaldehyde
- Ziegler–Natta → Polyethylene, polypropylene
- Hydroformylation → Aldehydes

CAGES AND CLUSTERS

1. Introduction

Clusters are compounds containing metal—metal bonds and a definite number of atoms (metal and non-metal) arranged in a polyhedral structure. Classified by nuclearity: Binuclear (2 metals), Trinuclear (3 metals), Tetranuclear (4 metals), etc.

2. Metal Carbonyl Clusters

Type	Example	Structure /	Oxidation
		Features	State
Binuclear	[Mn ₂ (CO) ₁₀]	Two Mn	0
		atoms linked	
		by Mn–Mn	
		single bond;	
		octahedral	
		geometry	
Trinuclear	[Fe ₃ (CO) ₁₂]	Triangular	0
		Fe ₃ core with	

		terminal and bridging CO	
Tetranuclear	[Co ₄ (CO) ₁₂]	Tetrahedral	0
		metal	
		framework	
Hexanuclear	[Ru ₆ (CO) ₁₈]	Octahedral	0
		Ru ₆ core;	
		highly	
		symmetric	

Metal–metal bonds stabilize low oxidation states, while CO ligands provide π -back donation strengthening M–C bonds.

3. Classification (Structural)

Category	Example	Description
Carbonyl	[Fe ₃ (CO) ₁₂],	Contain only CO
clusters	[Co ₄ (CO) ₁₂]	as ligands
Halide clusters	$[Nb_6Cl_{12}]^{2-}, [Mo_6Cl_8]^{4+}$	Metal atoms
		bridged by
		halides
Carbido clusters	[Fe ₅ C(CO) ₁₅]	Central C atom
		surrounded by
		metals
Mixed-ligand	[Mo ₂ Cl ₄ (CO) ₂ (PPh ₃) ₂]	Contain different
clusters		ligands (Cl, CO,
		PPh ₃)

4. Wade–Mingos Rules

Type	Skeletal Electron	Structure
	Pairs	
Closo	n+1	Complete
		polyhedron (B ₆ H ₆ ²⁻
		= octahedral)
Nido	n+2	Missing one vertex
		(BsH ₉)
Arachno	n+3	Missing two
		vertices (B ₄ H ₁₀)

5. Halide-Type Metal Clusters

Contain metal atoms linked via halogen bridges (Cl⁻, Br⁻, I⁻). Example: [Nb₆Cl₁₂]²⁻ with octahedral Nb₆ core, each edge bridged by Cl⁻; each Nb is +2. Used as building blocks in solid-state and superconducting materials.

6. Borazines (Inorganic Benzene)

Feature	Details
Formula	B ₃ N ₃ H ₆
Structure	Planar six-membered ring (B-
	N alternate)
Bonding	Delocalized π electrons; B–N
_	bond = 1.44 Å
Preparation	$3NH_3 + 3BCl_3 \rightarrow B_3N_3H_6 +$
_	9HC1
Reactivity	Hydrolyzed by water to give
	boric acid and ammonia

Analogy	Aromatic like benzene but
	more reactive

7. Phosphazenes

Property	Details
General Formula	$(NPCl_2)_n (n = 3-15)$
Common Example	(NPCl ₂) ₃
	(hexachlorocyclotriphosphazene)
Structure	Alternating P–N single and partial
	double bonds, π -delocalization
Reactions	Chlorines replaced by alkoxy or
	amino groups → polymers
Applications	Flame-resistant plastics, elastomers,
	biomedical uses
Bonding	P: sp^3 , N: sp^2 ; $d\pi$ – $p\pi$ bonding
	stabilizes ring

8. Metal Cluster Molecularity Overview

Cluster	Metal Centers	Key Feature
$[Mn_2(CO)_{10}]$	2	Single Mn–Mn
		bond
[Fe ₃ (CO) ₁₂]	3	Triangular Fe3 core
[Co ₄ (CO) ₁₂]	4	Tetrahedral core
[Ru ₆ (CO) ₁₈]	6	Octahedral core
$[Nb_6Cl_{12}]^{2-}$	6	Halide-bridged
	Q_1, Q_2	octahedron
B ₃ N ₃ H ₆	3B + 3N	Inorganic benzene
(NPCl ₂) ₃	3P + 3N	Cyclic phosphazene

9. Quick Recall Summary

- Binuclear cluster: [Mn₂(CO)₁₀] single metal–metal bond
- Trinuclear cluster: [Fe₃(CO)₁₂] triangular framework
- Halide cluster: [Nb₆Cl₁₂]²⁻ edge-bridged halides
- Borazine: B₃N₃H₆ inorganic benzene
- Phosphazene: (NPCl₂)₃ cyclic P–N system
- Wade–Mingos rule: predicts cluster geometry