NUCLEAR CHEMISTRY

1. Nuclear Fission

Splitting of a heavy nucleus (A > 200) into lighter nuclei with release of large energy (~200 MeV per fission). Example: $^{235}U + n \rightarrow ^{141}Ba + ^{92}Kr + 3n + energy$.

Types of Fission: Controlled (in reactors) and Uncontrolled (in atomic bombs).

2. Nuclear Fusion

Combination of light nuclei to form heavier nuclei with huge energy release, e.g., ${}^{2}H + {}^{3}H \rightarrow {}^{4}He + n + 17.6$ MeV. Occurs in sun and stars at $10^{7}-10^{8}$ K.

3. Radio-Analytical Techniques

Technique	Principle	Application	
Isotope Dilution	Radioactive isotope	Trace element	
	mixed with sample;	analysis.	
	activity measured.		
Radiometric	Radioactivity	Precipitation,	
Titration	change indicates	complexation	
	end point.	titrations.	
Tracer Technique	Radioisotope traces	Reaction	
	reaction path.	mechanism studies.	

Activation	Irradiation induces	Non-destructive
Analysis	radioactivity; γ-rays	elemental analysis.
	identify elements.	-

4. Activation Analysis

Sample irradiated with neutrons \rightarrow nuclei become radioactive \rightarrow characteristic γ -rays identify elements. Highly sensitive, non-destructive method used in trace and forensic analysis.

5. Decay Modes

Decay Type	Change in	Example
	Nucleus	
α-decay	Mass \downarrow by 4, Z \downarrow	$^{238}U \rightarrow ^{234}Th + \alpha$
	by 2	
β-decay	Neutron → Proton	$1^{4}C \rightarrow {}^{14}N + e^{-} + \bar{\nu}$
	+ e ⁻	
β ⁺ -decay	Proton → Neutron	22 Na \rightarrow 22 Ne + e ⁺ +
	$+e^+$	ν
Electron Capture	Nucleus captures e	$^{40}\text{K} + \text{e}^- \rightarrow ^{40}\text{Ar} + \text{v}$
γ-decay	Excited → ground	$^{60}\text{Co*} \rightarrow ^{60}\text{Co} + \gamma$
	$ +\gamma $	·

6. Types of Nuclear Reactions

Reaction Type	Equation / Description	Remarks
Elastic/Inelastic	nucleus +	Elastic: no energy
scattering	projectile → recoil	loss; Inelastic:
	$(+\gamma)$	excitation.

Transmutation	$14N + \alpha \rightarrow 17O + p$	Artificial change
		of element.
Photonuclear	$(\gamma, n), (\gamma, p)$	Induced by γ-rays.
Reaction		
Spallation	High-energy	Used in
	bombardment	accelerators.
	ejects nucleons	
Fragmentation	Heavy ion →	Astrophysical
	multiple fragments	significance.
Fusion	Light nuclei	Occurs in stars.
	combine	

7. Reaction Energetics

Term	Meaning	Remarks / Unit	
Threshold Energy	Minimum energy	Depends on mass	
	for a reaction.	defect.	
Energy Barrier	Coulombic	Overcome by high	
	repulsion between	KE.	
	nuclei.		
Q-Value	Energy change in	Positive →	
	reaction.	exoergic; Negative	
	→ endoergic.		
Nuclear Cross	Probability of	Unit: barn (10 ⁻²⁸	
Section	reaction.	cm ²).	

8. Fission as a Chain Reaction

Neutrons from one fission cause further fissions. Controlled by moderators (D₂O, graphite) and control rods (Cd, B). Critical mass needed to sustain reaction.

Component	Function
Moderator	Slows neutrons (D ₂ O,
	graphite).
Control rods	Absorb excess neutrons (Cd,
	B).
Coolant	Removes heat (Na, CO ₂ ,
	H ₂ O).

9. Nuclear Fuels

Type	Definition	Example
Fissile Isotopes	Undergo fission	²³⁵ U, ²³⁹ Pu, ²³³ U
	with slow neutrons.	
Fertile Isotopes	Convert into fissile	$^{238}U \rightarrow ^{239}Pu; ^{232}Th$
	on neutron	\rightarrow ²³³ U
	absorption.	

10. Radiation Hazards

Sources: α , β , γ , X-rays, neutrons. **Effects:** Ionization, DNA damage, burns, mutations. **Units:** Curie (Ci), Gray (Gy).

Protection: shielding, time reduction, distance maximization.

11. Nuclear Reactors in India

Reactor	Type	Location	Fuel /
			Moderator
Apsara	Swimming	Trombay	Natural U,
	pool type		water
CIRUS	Heavy water	Trombay	Natural U,
	moderated		D_2O
Dhruva	Research	Trombay	Natural U,
	reactor		D_2O
TAPS-1 & 2	Power reactor	Tarapur	Enriched U,
			light water
MAPS	Madras	Kalpakkam	Natural U,
	Atomic		heavy water
	Power Station		
KAPS	Kakrapar	Gujarat	PHWR
	Power Station		
Kudankulam	Pressurized	Tamil Nadu	Enriched U,
	water reactor		light water
	(VVER)		

12. Quick Revision Summary

- Fission: Splitting of heavy nuclei \rightarrow 200 MeV energy.
- Fusion: Combination of light nuclei → high energy.
- Activation Analysis: Neutron activation; γ emission analysis.
- Decay Modes: α , β^- , β^+ , EC, γ .
- Q-Value: Energy released or absorbed in reaction.
- Cross Section: Reaction probability (barn).
- Chain Reaction: Fission propagated by neutrons.
- Fissile: Directly fissionable by slow neutrons.
- Fertile: Converts into fissile isotope.
- Reactor Components: Moderator, control rod, coolant.