DATA ANALYSIS & SAMPLING

1. Nature of Quantitative Measurements:

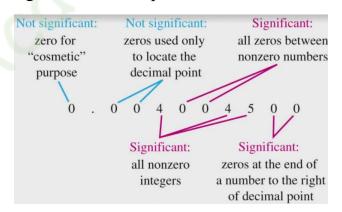
- Numerical data from experiments/observations.
- Ensure accuracy, precision, reliability.

2. Mean & Median:

- Mean $(\bar{x}) = (\Sigma x)/n$
- Median = middle value of ordered data
- Mean sensitive to outliers; median less affected.

3. Precision & Accuracy:

- Precision: closeness of repeated measurements.
- Accuracy: closeness to true value.
- High precision \neq high accuracy.


4. Standard Deviation (σ or s):

• Measures spread of data.

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

5. Significant Figures:

- Digits carrying meaning about precision.
- Non-zero digits always significant.
- Zeros between digits significant.
- Trailing zeros are significant only if they appear to the right of a decimal point.

6. Gaussian Distribution:

- Bell-shaped curve, mean μ .
- 68.3% within $\pm 1\sigma$, $95.5\% \pm 2\sigma$, $99.7\% \pm 3\sigma$.

7. Null Hypothesis (H₀):

- Assumes no significant difference.
- Statistical tests decide rejection/acceptance.

8. Confidence Interval of Mean:

• Range where true mean lies with certain confidence.

$$CI = ar{x} \pm z rac{s}{\sqrt{n}}$$

CI = confidence interval

= sample standard deviation

= sample mean

n = sample size

= confidence level value

9. Rejection of Data (Q-Test):

- Detects outliers in small datasets.
- Q = |suspect nearest| / |largest smallest|
- If $Q_{calc} > Q_{tab}$, reject point.

10. Student's t-Test:

- Determines if two means differ.
- Used when n < 30 or σ unknown.

11. F-Test:

- Compares variances: $F = (s_1^{1/} s_2^{2})$ (larger on top)
- Checks homogeneity of variances.

12. Errors:

• Absolute error = |measured - true|

- Relative error = (absolute error/ true value) $\times 100\%$
- Sources: instrumental, personal, method, environmental.

13. Linear Regression:

- Relation between y (dependent) and x (independent).
- y = a + bx; b = slope = cov(x,y) / var(x); $a = \bar{y} b \times \bar{x}$

14. Covariance & Correlation Coefficient:

- $Cov(x,y) = [\Sigma(x_i \bar{x})(y_i \bar{y})]/[(n-1)]$
- $r = cov(x, y) / (s_x \times s_y), r = +1 \rightarrow perfect positive$ correlation, $r = -1 \rightarrow perfect negative correlation,$ $r = 0 \rightarrow \text{no correlation}$

15. Sampling Principles:

- Goal: representative sample.
- Solids: coning & quartering, riffle splitter.
- Liquids: grab or composite sampling.
- Gases: bulbs, pumps, cylinders.
- Gross sampling: all increments collected before reduction.
- Sampler's responsibility: randomness, avoid contamination, label.
- Pitfalls & Hazards: inadequate mixing, segregation, contamination, evaporation, toxic exposure.