
Unit II — Real Analysis

PG TRB Mathematics Notes

Unit II — Real Analysis
Syllabus Focus: Elementary set theory; finite, countable and uncountable sets; real numbers as a complete ordered field; Archimedean property; supremum/infimum;
sequences and series (convergence, lim sup, lim inf); Bolzano–Weierstrass; Heine–Borel; continuity, uniform continuity, differentiability, Mean Value Theorem; sequences and
series of functions (uniform convergence); Riemann–Stieltjes integral (definition, existence, properties, integration & differentiation, vector-valued case); power series;
Fourier series; functions of several variables (directional & partial derivatives, derivative as linear map, inverse & implicit function theorems).
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� Concepts Overview

Concept Definition / Description Key Points / Conditions Example

Countable / Uncount-
able Sets

Classification by bijection with N (countable) or not (uncount-
able).

Q is countable; R is uncount-
able (Cantor diagonal).

N,Z,Q countable; R uncount-
able.

Real Number System R is a complete ordered field : ordered field with LUB property. Completeness ⇐⇒ every
nonempty bounded-above set
has a supremum.

sup[0, 1) = 1.

Archimedean Prop-
erty

∀x ∈ R, ∃n ∈ N with n > x. implies 1/n → 0. Given ϵ > 0, choose n > 1
ϵ .

Supremum (LUB) If A ⊂ R is bounded above, s = supA iff (i) s is an upper
bound of A, and (ii) ∀ε > 0∃a ∈ A with s− ε < a ≤ s.

Smallest upper bound; may or
may not belong to A; exists for
every nonempty bounded-above
set in R (completeness).

A = (0, 1): supA = 1 (not in
A).

Infimum (GLB) If A ⊂ R is bounded below, t = inf A iff (i) t is a lower bound
of A, and (ii) ∀ε > 0∃a ∈ A with t ≤ a < t+ ε.

Largest lower bound; may or
may not belong to A; exists for
every nonempty bounded-below
set in R.

A = (0, 1): inf A = 0 (not in
A).

Sequence Function an : N → R; convergent if limn→∞ an = L. Cauchy ⇐⇒ convergent (in
R); uniqueness of limit.

an = 1
n → 0.

Convergent Series
∑

an converges if partial sums sn converge. Tests: Comparison, Limit Com-
parison, Ratio, Root, Integral,
Alternating.

∑ 1
n2 converges.

Divergent Series Series fails to converge. Necessary: an ̸→ 0 ⇒
∑

an di-
verges.

Harmonic series
∑ 1

n diverges.

Limit Superior lim sup
n→∞

an = inf
n

(
sup
k≥n

ak
)
. Largest subsequential limit an = (−1)n: lim sup = 1.

Limit Inferior lim inf
n→∞

an = sup
n

(
inf
k≥n

ak
)
. Smallest subsequential limit an = (−1)n: lim inf = −1.

Continuity f continuous at a if limx→a f(x) = f(a) (or ϵ–δ). Equivalent statement: xn →
a ⇒ f(xn) → f(a). Closed
under sum, product, quotient
(where defined) and composi-
tion.

Polynomials, expx, sinx are
continuous on R.

2/10



Professor Academy PG TRB Mathematics

Concept Definition / Description Key Points / Conditions Example

Uniform Continuity f is uniformly continuous on D if ∀ε > 0, ∃δ > 0 such that
∀x, y ∈ D, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Every continuous function on a
compact set is uniformly contin-
uous.

x2 uniformly continuous
on [0, 1] but not on R.

Differentiability f ′(a) = limh→0
f(a+h)−f(a)

h if limit exists. Differentiable ⇒ continuous
(not conversely).

f(x) = |x| continuous,
not differentiable at 0.

Mean Value Theorem If f continuous on [a, b] and differentiable on (a, b), then ∃c

with f ′(c) =
f(b)− f(a)

b− a
.

Rolle’s theorem special case. f(x) = x2 on [0, 2]: c =
1.

Riemann–Stieltjes Inte-
gral

∫ b

a
f dg = lim

∑
f(ti)

(
g(xi)− g(xi−1)

)
. Exists if f continuous and g of

bounded variation
Example:

∫ 1

0
x d(x2) =

2
3 .

Sequences of Functions Pointwise: limn→∞ fn(x) = f(x) for each x. Uniform: ∀ε >
0, ∃N s.t. |fn(x)− f(x)| < ε for all x and n > N .

Uniform convergence preserves
continuity

fn(x) = x/n → 0 uni-
formly on [0, 1].

Series of Functions A series
∑

fn(x) converges to f(x) if its partial sums SN (x) =∑N
n=1 fn(x) satisfy limN→∞ SN (x) = f(x). Uniform conver-

gence means SN → f uniformly on the domain.

Uniform convergence preserves
continuity, integrability, and
differentiability under suitable
conditions.

∑ xn

2n converges uni-
formly on [−1, 1].

Power Series

∞∑
n=0

an(x− c)n; radius R via root/ratio test. Converges for |x− c| < R; dif-
ferentiable/integrable term wise
inside (−R,R).

ex =
∑ xn

n! (all x).

Fourier Series f(x) ∼ a0
2 +

∑
n≥1

(
an cosnx+ bn sinnx

)
. Converges for piecewise smooth

f .
f(x) = x on (−π, π)
(odd) has sine series.

Partial Derivative
∂f

∂xi
(a) = lim

h→0

f(a+ hei)− f(a)

h
. Existence of partials need not

imply differentiability. Continu-
ous partials are a sufficient con-
dition for differentiability.

Example: f(x, y) = x2y:
fx = 2xy, fy = x2.

Directional Derivative For a unit vector u, Duf(a) = lim
t→0

f(a+ tu)− f(a)

t
, if the

limit exists.

Gives the rate of change of f in
direction u. If f is differentiable,
then Duf(a) = ∇f(a)·u.

At (1, 1), for f(x, y) =
x2y, ∇f = (2xy, x2) ⇒
∇f(1, 1) = (2, 1).

Total Derivative Df(a) For f : Rn → Rm, f is differentiable at a if ∃ linear map
L : Rn→Rm such that f(a+ h) = f(a) + L(h) + o(∥h∥).

Represents the best linear ap-
proximation to f at a; L =
Df(a) and its matrix form is
the Jacobian.

Df(a) =
[ ∂fi
∂xj

]
m×n

.
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Ù Important Theorems

□ Bolzano–Weierstrass Theorem. Every bounded sequence in Rn has a convergent subsequence.

□ Heine–Borel Theorem. A subset of Rn is compact ⇐⇒ it is closed and bounded. Equivalently, every open cover admits a finite subcover.

□ Intermediate Value Theorem (IVT). If f is continuous on [a, b], then for every y between f(a) and f(b) there exists c ∈ (a, b) with f(c) = y.

□ Extreme Value Theorem (EVT). A continuous function on a compact set attains its maximum and minimum.

□ Mean Value Theorem (MVT). If f is continuous on [a, b] and differentiable on (a, b), then ∃ c ∈ (a, b) with f ′(c) =
f(b)− f(a)

b− a
. Special case:

Rolle’s Thm (f(a) = f(b)) ⇒ ∃c with f ′(c) = 0.

□ Cauchy’s Mean Value Theorem. If f, g continuous on [a, b] and differentiable on (a, b), then ∃c ∈ (a, b) with
f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
provided g′(x) ̸= 0

on (a, b).

□ Cauchy Criterion (Completeness). In R, a sequence is convergent ⇐⇒ it is Cauchy. Similarly,
∑

an converges ⇐⇒ the Cauchy partial-sum
condition holds.

□ Weierstrass Approximation Theorem. Every continuous function on [a, b] can be uniformly approximated by polynomials on [a, b].

□ Uniform Convergence — Continuity/Integration/Differentiation. If fn → f uniformly on [a, b] and each fn is continuous, then f is continuous. If

fn → f uniformly and each fn is Riemann integrable, then limn→∞
∫ b
a fn =

∫ b
a f. Under suitable conditions (e.g. uniform convergence of f ′

n and pointwise
convergence at one point), differentiation can pass to the limit.

□ Weierstrass M-Test (“M-Test”). If |fn(x)| ≤ Mn on a set E and
∑

Mn converges, then
∑

fn converges uniformly on E.

□ Fundamental Theorem of Calculus (FTC). Part I: If f is integrable on [a, b] and F (x) =
∫ x
a f(t) dt, then F is continuous on [a, b] and F ′(x) = f(x)

wherever f is continuous. Part II: If F is differentiable on [a, b] with F ′ = f , then
∫ b
a f(x) dx = F (b)− F (a).

□ Riemann–Stieltjes Integration by Parts. If f, g are Riemann–Stieltjes integrable on [a, b], then

∫ b

a
f dg +

∫ b

a
g df = f(b)g(b)− f(a)g(a).

□ Inverse Function Theorem. If f : Rn → Rn is continuously differentiable near a and detDf(a) ̸= 0, then f is locally invertible near a and f−1 is
continuously differentiable.

□ Implicit Function Theorem. If F : Rn+m → Rm is continuously differentiable and F (a, b) = 0 with det
(
∂F/∂y(a, b)

)
̸= 0, then there exists a

neighbourhood where the equation F (x, y) = 0 defines y = φ(x) with φ continuously differentiable.
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ó Example Table — Sequences

No. Sequence an Behaviour (brief) Conv./Div./Osc. Monotone lim sup an lim inf an Limit L

1 an =
1

n
Tends to 0; bounded;
Cauchy.

Convergent Decreasing 0 0 0

2 an = (−1)n Alternating signs;
bounded; no single limit.

Oscillating (no
limit)

No 1 −1 DNE

3 an =
(−1)n

n
Alternating with decaying
magnitude.

Convergent Not monotone 0 0 0

4 an = 1 +
1

n
Approaches 1 from above;
bounded.

Convergent Decreasing 1 1 1

5 an = n Unbounded growth to
+∞.

Divergent (+∞) Increasing +∞ +∞ +∞

6 an = sinn Dense oscillation in [−1, 1];
no limit.

Oscillating (no
limit)

No 1 −1 DNE

7 an =
√
n+ 1−

√
n Positive, decreases to 0;

telescopic type diff.
Convergent Decreasing 0 0 0

8 an = n(−1)n Alternates between n and
1
n ; unbounded peaks.

Divergent
(unbounded
oscillation)

No +∞ 0 DNE

Notes: DNE = does not exist. For oscillatory bounded sequences (e.g. sinn), lim sup and lim inf capture the range of subsequential limits. Monotone bounded sequences
converge by monotone convergence.
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ó Example Table — Series

No. Series
∑

an Type / Test Used Result Remarks / Key Points

1
∞∑
n=1

1

n
Harmonic series (p-series, p = 1). Divergent. Diverges slowly to +∞; benchmark for

comparison.

2

∞∑
n=1

1

n2
p-series with p = 2 > 1. Convergent. Absolutely convergent;∑

1/n2 = π2/6.

3
∞∑
n=1

(−1)n+1 1

n
Alternating harmonic; Leibniz test. Conditionally

convergent.
Converges to ln 2; not absolutely
convergent.

4

∞∑
n=1

(−1)n

n2
Alternating p-series (p > 1). Absolutely

convergent.
Because

∑
|an| =

∑
1/n2 converges.

5
∞∑
n=0

xn

2n
Geometric, ratio r = x

2 . Convergent if
|x| < 2.

Sum = 1
1−x/2 ; diverges for |x| ≥ 2.

6

∞∑
n=0

1

n!
Ratio test: lim |an+1/an| = 0 < 1. Convergent. Sum = e; convergence extremely

rapid.

7
∞∑
n=1

n+ 1

n
nth-term test (an ↛ 0). Divergent. Since an → 1 ̸= 0, fails basic

convergence test.

8
∞∑
n=1

(
n

n+ 1

)n2

Root test: lim n
√
|an| = n

n+1 → 1. Convergent. Ratio/root tests show fast decay → 0;
convergent by comparison.

Notes: A series
∑

an converges absolutely if
∑

|an| converges; otherwise it may converge conditionally. Divergence of
∑

an always follows if an ↛ 0. Geometric and
p-series act as standard comparison benchmarks.
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Ù Riemann–Stieltjes Integral: Properties

Definition. For functions f, g on [a, b], the Riemann–Stieltjes integral∫ b

a

f(x) dg(x) = lim
∥P∥→0

∑
f(ti) [g(xi)− g(xi−1)]

is defined whenever the limit exists and is independent of the choice of tags ti.

Existence. If f is continuous and g is of bounded variation (in particular, monotone), the integral exists.

Properties.

□ Linearity:

∫ b

a

[αf + βh] dg = α

∫ b

a

f dg + β

∫ b

a

h dg.

□ Additivity over intervals: If a < c < b, then
∫ b

a
f dg =

∫ c

a
f dg +

∫ b

c
f dg.

□ Integration by parts: If both
∫ b

a
f dg and

∫ b

a
g df exist, then∫ b

a

f dg +

∫ b

a

g df = f(b)g(b)− f(a)g(a).

□ Fundamental theorem (link with differentiation): If F (x) =
∫ x

a
f(t) dg(t) and g is differentiable with continuous g′, then F ′(x) = f(x)g′(x).

□ Change of variable: If ϕ : [α, β]→ [a, b] is increasing and continuously differentiable, then∫ b

a

f(x) dg(x) =

∫ β

α

f(ϕ(t)) d[g◦ϕ(t)].

□ Vector-valued integration: For f : [a, b]→Rn with components fi, define

∫ b

a

f dg =
( ∫ b

a

f1 dg, . . . ,

∫ b

a

fn dg
)
. Each coordinate integral is computed separately.

□ Reduction to Riemann integral: If g(x) = x, then
∫ b

a
f dg =

∫ b

a
f(x) dx.

Key Insight: The Riemann–Stieltjes integral generalises the Riemann integral by allowing g to “weight” intervals unevenly, making it suitable for integration with respect
to cumulative distributions or monotone functions.
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ó Example Table — Sequences & Series of Functions

No. Type fn(x) or
∑

fn(x) Domain Pointwise Limit f Uniform? Key Notes (continuity /
∫

/ ′)

1 Sequence fn(x) = xn [0, 1] f(x) =

{
0, x ∈ [0, 1)

1, x = 1
No Limit is discontinuous ⇒ no uniform conv.;

dominated by x < 1 ⇒ fn → 0 pointwise.

2 Sequence fn(x) =
x

n
[0, 1] f(x) ≡ 0 Yes ∥fn − f∥∞ = 1

n → 0; preserves continuity;∫
fn →

∫
f .

3 Sequence fn(x) = sin
(
x
n

)
R (or [0, 1]) f(x) ≡ 0 Yes | sin(x/n)| ≤ |x|/n → 0 uniformly on any

bounded interval; passes limit under
∫
.

4 Sequence fn(x) =
x

1 + nx2
R f(x) ≡ 0 Yes |fn(x)| ≤ 1

2
√
n
(max at x = 1/

√
n); uniform

⇒
∫
fn → 0.

5 Sequence fn(x) = nxe−nx [0,∞) f(x) ≡ 0 No supx fn(x) = e−1 at x = 1/n ⇒ not
uniform;

∫∞
0 fn dx = 1 (no

∫
-limit swap).

6 Sequence fn(x) = (1 + x
n)

n R (or any
compact K)

f(x) = ex No on R Uniform on each compact K ⊂ R
(Dini/Arzelà on K); not uniform on all R.

7 Series

∞∑
n=0

xn

2n
[−1, 1] f(x) = 1

1−x/2 Yes M-test: |xn/2n| ≤ 1/2n on [−1, 1]; uniform
⇒ termwise

∫
and continuity.

8 Series

∞∑
n=1

(−1)n+1xn

n
[−r, r], r < 1 f(x) = log(1 + x) Yes on

[−r, r]
Uniform on compact [−r, r] ⊂ (−1, 1) by
Dirichlet/M-test variant; not uniform on
(−1, 1).

Notes: Uniform convergence preserves continuity and allows lim
∫
=

∫
lim (and, with conditions, differentiation). Failure of uniform convergence (e.g. rows 1, 5, 6) explains

discontinuous limits or obstruction to interchange of limit and integral.
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¢ Power Series & Fourier Series

Power Series. A power series about x = c is
∞∑

n=0

an(x− c)n,

with radius of convergence

R =
1

lim supn→∞ |an|1/n
.

It converges absolutely for |x− c| < R, diverges for |x− c| > R, and may converge conditionally on |x− c| = R. Within |x− c| < R, it can be differentiated or integrated
term-by-term.
Common Expansions:

ex = 1 + x+ x2

2! +
x3

3! + · · · , R = ∞,

1

1− x
= 1 + x+ x2 + x3 + · · · , |x| < 1,

ln(1 + x) = x− x2

2 + x3

3 − · · · , |x| < 1.

Power series represent analytic (infinitely differentiable) functions inside their interval of convergence.

Fourier Series. A 2π–periodic, piecewise smooth function f(x) can be expressed as

f(x) ∼ a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx),

where

an =
1

π

∫ π

−π

f(x) cosnx dx, bn =
1

π

∫ π

−π

f(x) sinnx dx.

At points of continuity, the series converges to f(x); at jumps, to the midpoint of the one-sided limits (Gibbs effect).
Key facts: Even f⇒bn = 0 (cosine series); Odd f⇒an = 0 (sine series). Parseval identity:

1

π

∫ π

−π

|f |2dx =
a20
2

+

∞∑
n=1

(a2n + b2n).

Examples:

f(x) = x on (−π, π) : x = 2

∞∑
n=1

(−1)n+1

n
sinnx,

f(x) = |x| on (−π, π) : |x| = π

2
− 4

π

∞∑
n=1

cos((2n− 1)x)

(2n− 1)2
.

Summary. Power series give local polynomial representations (radius-limited); Fourier series give global trigonometric representations (periodic domain).
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