Professor Academy

Unit 4— Complex Analysis

Syllabus:Introduction to the concept of analytic function: Limits and continuity – Analytic functions – Polynomials and rational functions – Elementary theory of power series – Maclaurin's series – Uniform convergence – Power series and Abel's limit theorem – Analytic functions as mapping – Conformality arcs and Closed curves – Analytical functions in regions – Conformal mapping – Linear transformations – the linear group, the cross ratio and symmetry. Complex integration – Fundamental theorems – line integrals – rectifiable arcs – line integrals as functions of arcs – Cauchy's theorem for a rectangle – Cauchy's theorem in a Circular disc – Cauchy's integral formula: The index of a point with respect to a closed curve – The integral formula – Higher derivatives – Local properties of Analytic functions and removable singularities – Taylor's theorem – Zeros and Poles – The local mapping – The maximum modulus Principle.

♦ Concepts Overview

Concept	Description	Key Condition / Note	Example
Limit in $\mathbb C$	$\lim_{z\to z_0} f(z) = L$ if $f(z)$ approaches the same complex number L from all directions in the plane.	:0	$\lim_{z \to 0} \frac{z^2}{ z } = 0 \text{(exists)};$ $\lim_{z \to 0} \frac{z}{\bar{z}} \text{ (does not exist)}.$
Continuity	f continuous at z_0 iff $\lim_{z\to z_0} f(z) = f(z_0)$.	(within radius) are continu-	$f(z) = z^3 + 2z + 1$ is continuous $\forall z \in \mathbb{C}$.
Differentiability & Analytic Function	f is complex-differentiable at z_0 if $f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists. Analytic at z_0 if differentiable in some neighborhood of z_0 .	Cauchy–Riemann equations: if $f = u + iv$ with continuous partials, then $u_x = v_y$, $u_y = -v_x$ (necessary & sufficient).	$f(z) = e^z$, $\sin z$, $\cos z$ are entire; $f(z) = \bar{z}$ is nowhere analytic.
Harmonic Function	A harmonic function u satisfies Laplace Equation: $u_{xx} + u_{yy} = 0$	Real/imaginary parts of an analytic function are harmonic functions.	For $f(z) = z^2$: $u = x^2 - y^2$, $v = 2xy$ are harmonic.

! Named Theorems

- Cauchy-Riemann Theorem: If f(z) = u(x, y) + iv(x, y) has continuous first partial derivatives in a region R and satisfies $u_x = v_y$, $u_y = -v_x$, then f is analytic in R. Conversely, if f is analytic, these relations hold.
- Cauchy's Theorem: If f is analytic within and on a simple closed contour C, then

$$\oint_C f(z) \, dz = 0.$$

The integral of an analytic function around any closed contour is zero if the region contains no singularity.

• Cauchy's Integral Formula: If f is analytic within and on a simple closed contour C enclosing a, then

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz.$$

It allows evaluation of f(a) from its boundary values.

• Cauchy's Integral Formula for Derivatives: For $n \ge 1$,

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^{n+1}} dz.$$

All derivatives of an analytic function exist and are analytic.

• Cauchy's Inequality: If $|f(z)| \leq M$ on a circle |z-a| = R and f analytic within it, then

$$|f^{(n)}(a)| \le \frac{n! M}{R^n}.$$

Gives an upper bound for derivatives of analytic functions.

- Liouville's Theorem: Every bounded entire function (analytic everywhere on $\mathbb C$) is constant. Corollary: A non-constant entire function must be unbounded.
- Fundamental Theorem of Algebra: Every non-constant polynomial P(z) with complex coefficients has at least one complex root. (Follows from Liouville's theorem.)

• Taylor's Theorem: If f is analytic inside and on |z - a| = R, then for all |z - a| < R,

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$

The power series converges to f(z) within its radius.

- Morera's Theorem: If f is continuous in a region R and $\oint_C f(z) dz = 0$ for every closed contour C in R, then f is analytic in R.
- Maximum Modulus Principle: If f is analytic and non-constant in a region R, then |f(z)| cannot attain a local maximum inside R; the maximum occurs only on the boundary.
- Mean Value Property of Analytic Functions: If f is analytic inside and on a circle |z-a|=r, then

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta.$$

The value at the center equals the average over the boundary.

- Open Mapping Theorem: A non-constant analytic function maps open sets to open sets. (Hence analytic functions cannot collapse an open region to a curve or point.)
- Cauchy's Residue Theorem: If f is analytic in a region except for isolated singularities a_k , then

$$\oint_C f(z) dz = 2\pi i \sum \text{Res}(f, a_k),$$

where the sum is taken over singularities inside C. Basis of residue calculus for evaluating integrals.

• Argument Principle: If f is meromorphic inside and on a simple closed contour C without zeros or poles on C, then

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = N - P,$$

where N and P are numbers of zeros and poles (with multiplicity) inside C.

• Rouche's Theorem: If f and g are analytic inside and on C and |g(z)| < |f(z)| on C, then f and f + g have the same number of zeros inside C. Very useful in counting zeros of polynomials.

∞ Limit, Continuity & Differentiability

Concept	Example / Function	Explanation
1. Limit (Exists)	$\lim_{z \to 0} \frac{z^2}{ z } = 0$	Let $z = re^{i\theta} \Rightarrow \frac{z^2}{ z } = re^{2i\theta}$. As $r \to 0$, magnitude $r \to 0$ for all directions, so the limit exists and equals 0.
2. Limit (Does Not Exist)	$\lim_{z \to 0} \frac{x^2 - y^2}{x^2 + y^2}$	Along $y = 0 \Rightarrow 1$; along $x = 0 \Rightarrow -1$. Different values along different paths limit does not exist.
3. Limit (Path Independent Check)	$\lim_{z \to 0} \frac{z^3}{ z ^2}$	$z=re^{i\theta}\Rightarrow \frac{z^3}{ z ^2}=re^{i3\theta}.$ As $r\to 0$, result £0 independent of θ limit exists.
4. Continuity (Polynomial Function)	$f(z) = z^2 + 2z + 1$	Since f is a polynomial, it is continuous at all points of \mathbb{C} . E.g., $\lim_{z\to 1} f(z) = 4 = f(1)$.
5. Continuous but Not Differentiable	$f(z) = z = \sqrt{x^2 + y^2}$	Continuous everywhere, but not differentiable at $z = 0$ because $\lim_{z\to 0} f(z)/z$ depends on direction of approach.
6. Differentiable (Analytic)	$f(z) = z^3$	$f'(z) = 3z^2$. $u = x^3 - 3xy^2$, $v = 3x^2y - y^3$ satisfy C-R equations everywhere analytic entire function.
7. Not Analytic Anywhere	$f(z) = \bar{z} = x - iy$	$u=x, v=-y \Rightarrow u_x=1, v_y=-1$. C–R equations fail f is nowhere analytic.
8. Differentiable Only at One Point	$f(z) = \begin{cases} \frac{z^3}{ z ^2}, & z \neq 0\\ 0, & z = 0 \end{cases}$ $f(z) = \begin{cases} z, & z \leq 1,\\ 1/z, & z > 1 \end{cases}$	Continuous at 0 and $f'(0) = 0$, but C-R equations fail for $z \neq 0$; hence f is differentiable only at the origin.
9. Piecewise Continuous (Not Analytic)	$f(z) = \begin{cases} z, & z \le 1, \\ 1/z, & z > 1 \end{cases}$	Continuous on $ z = 1$, but not differentiable there — function changes definition across the boundary.

X¹ Series and Expansions

[title=Maclaurin and Laurent Series — Key Forms and Famous Expansions]

Maclaurin Series — Definition.

If a function f(z) is analytic at z = 0, then

$$f(z) = f(0) + f'(0)z + \frac{f''(0)}{2!}z^2 + \frac{f^{(3)}(0)}{3!}z^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}z^n.$$

Laurent Series — Definition.

If f(z) is analytic in an annulus $r_1 < |z - a| < r_2$, then

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n = \underbrace{\sum_{n = 0}^{\infty} a_n (z - a)^n}_{\text{regular part}} + \underbrace{\sum_{n = 1}^{\infty} \frac{b_n}{(z - a)^n}}_{\text{principal part}}.$$

Famous Standard Expansions (Essential 7).

1.
$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$
 (entire)

2.
$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots$$
, $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots$

3.
$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \cdots, \quad |z| < 1$$

4.
$$(1+z)^n = 1 + nz + \frac{n(n-1)}{2!}z^2 + \frac{n(n-1)(n-2)}{3!}z^3 + \cdots, \quad |z| < 1$$

5.
$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots, \quad |z| < 1$$

6.
$$\frac{1}{z(z-1)} = \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots, \quad |z| > 1$$

(Laurent)

5/11

Note: Series 1–6 are Maclaurin/Taylor expansions (inside disc of convergence); Series 7 is a standard Laurent form (outside |z|=1).

& Conformal Mapping

Definition.

A function w = f(z) is said to be a **conformal mapping** at a point z_0 if it preserves the magnitude and direction of angles between any two intersecting curves passing through z_0 .

Mathematically, f is conformal at z_0 if:

$$f'(z_0) \neq 0$$
,

and f is analytic in a neighborhood of z_0 . If $f'(z_0) = 0$, the mapping is not conformal there (angle magnification or rotation fails).

Properties.

- Analytic and one-to-one functions are conformal where $f'(z) \neq 0$.
- Preserves orientation (sense) if the Jacobian determinant $|f'(z)|^2 > 0$.
- Maps infinitesimal figures to similar figures (equal angles, different size).
- Compositions of conformal maps are conformal.

Bilinear Transformation

- 1. Translation: w = z + a (where a is complex constant) Effect: Shifts every point of the plane by the vector a. No change in shape, size, or orientation.
- 2. Rotation: $w = e^{i\theta}z$ Effect: Rotates the entire plane through an angle θ about the origin. Distances preserved.
- **3. Magnification (Dilation):** w = kz, k > 0 Effect: Enlarges or reduces all distances by a real factor k. Angles preserved.
- 4. Reflection: $w = \bar{z}$ Effect: Reflects points across the real axis. Not analytic (hence not conformal).
- 5. Inversion: w = 1/z Effect: Interchanges the interior and exterior of the unit circle; maps circles and straight lines to circles or lines. Angle preserved but orientation reversed.
- 6. Möbius (Linear Fractional) Transformation:

$$w = \frac{az+b}{cz+d}, \quad ad-bc \neq 0.$$

Effect: Composed of translation, rotation, inversion, and magnification. It maps circles and straight lines in the z-plane to circles or straight lines in the w-plane. This transformation forms a group under composition.

7. Cross-Ratio Invariance: For four distinct points z_1, z_2, z_3, z_4 ,

$$(z_1, z_2; z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}.$$

If
$$w = \frac{az+b}{cz+d}$$
, then

$$(w_1, w_2; w_3, w_4) = (z_1, z_2; z_3, z_4),$$

showing the cross ratio is invariant under Möbius transformations.

8. Example $-w=z^2$: Maps every point $re^{i\theta}$ to $r^2e^{i2\theta}$; angles are doubled, distances squared. Conformal everywhere except at z=0 where f'(z)=0.

Complex Integration: Examples

1. Line Integral Evaluate $\int_C z \, dz$ where C is the unit circle |z| = 1 traversed once counter-clockwise.

Parameterize $z=e^{it},\,dz=ie^{it}dt,\,\,0\leq t\leq 2\pi.$ Then

$$\int_C z \, dz = \int_0^{2\pi} e^{it} (ie^{it}) dt = i \int_0^{2\pi} e^{2it} dt = 0.$$

Hence, the integral of an analytic monomial z^n over |z|=1 is zero unless n=-1.

2. Cauchy's Theorem For $f(z) = z^2$ on the circle |z| = 2, f is analytic everywhere, so

$$\oint_C f(z) \, dz = 0.$$

Any polynomial (analytic entire) integrated around a closed contour gives zero.

3. Cauchy's Integral Formula Let $f(z) = z^2$ and C: |z| = 1. For a = 0,

$$f(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - a} dz = \frac{1}{2\pi i} \oint_C \frac{z^2}{z} dz = \frac{1}{2\pi i} \oint_C z dz = 0,$$

which agrees with the direct value f(0) = 0.

4. Cauchy's Integral Formula for Higher Derivatives For $f(z) = e^z$, a = 0, n = 1

$$f^{(1)}(a) = \frac{1!}{2\pi i} \oint_C \frac{f(z)}{(z-a)^2} dz = \frac{1}{2\pi i} \oint_C \frac{e^z}{z^2} dz.$$

Residue of e^z/z^2 at 0 is 1; hence the integral $= 2\pi i(1)/(2\pi i) = 1 \Rightarrow f'(0) = 1$.

5. Index (Winding Number) For contour C: |z| = 2 and point a = 0,

$$n(C,a) = \frac{1}{2\pi i} \oint_C \frac{dz}{z-a} = \frac{1}{2\pi i} \oint_C \frac{dz}{z} = 1.$$

Thus the curve |z|=2 encloses the origin once in the positive (anticlockwise) sense. If traversed clockwise, n(C,a)=-1.

PG TRB Mathematics

© Zeros and Singularities

Zero of a Function.

A point z_0 is called a **zero of order m** (or multiplicity m) of an analytic function f(z) if

$$f(z) = (z - z_0)^m g(z),$$

where g(z) is analytic at z_0 and $g(z_0) \neq 0$. The smallest such integer m is the order of the zero. If m = 1, the zero is said to be simple.

Singularity (Isolated).

A point z_0 is an **isolated singularity** of f if f(z) is analytic in a region $0 < |z - z_0| < r$, but not analytic at z_0 itself.

Classification of Singularities.

- Removable Singularity: $\lim_{z\to z_0} f(z)$ exists and is finite. Defining $f(z_0) = \lim_{z\to z_0} f(z)$ makes f analytic at z_0 .
- Pole of Order m: $f(z) \to \infty$ as $z \to z_0$; $(z-z_0)^m f(z)$ is analytic and nonzero at z_0 . If $m=1 \to simple$ pole.
- Essential Singularity: Neither removable nor a pole. f(z) exhibits erratic behaviour near z_0 and attains nearly every complex value in every neighbourhood of z_0 (Casorati-Weierstrass Theorem).

Identification Rule.

The nature of an isolated singularity of f(z) at z = a can be determined by examining either its **Laurent expansion** about a or by multiplying with powers of (z - a):

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n.$$

- All $a_n = 0$ for $n < 0 \Rightarrow$ Removable singularity.
- Finite number of negative terms \Rightarrow Pole (finite order).
- Infinite negative terms \Rightarrow Essential singularity.

Alternatively, if $(z-a)^m f(z)$ becomes analytic and nonzero at z=a, then f has a pole of order m at a.

© Examples of Zeros and Singularities

- **1. Zero (Order 3):** $f(z) = z^3(1+z)$ has a zero of order 3 at z = 0 since $f(z) = (z-0)^3(1+z)$ and $g(0) = 1 \neq 0$.
- 2. Removable Singularity: $f(z) = \frac{\sin z}{z}$ at z = 0. $\lim_{z \to 0} \frac{\sin z}{z} = 1$. Defining f(0) = 1 makes it analytic at z = 0.
- 3. Another Removable Case: $f(z) = \frac{e^z 1 z}{z^2}$ has $\lim_{z \to 0} \frac{e^z 1 z}{z^2} = \frac{1}{2}$. Hence removable at z = 0.
- **4. Simple Pole (Order 1):** $f(z) = \frac{1}{z-2}$. (z-2)f(z) = 1 finite \Rightarrow pole of order 1 at z = 2.
- **5. Pole of Order 2:** $f(z) = \frac{1}{(z-1)^2}$. $(z-1)^2 f(z) = 1$ finite \Rightarrow pole of order 2 at z = 1.
- 6. Pole of Higher Order (Order 4): $f(z) = \frac{1}{(z-3)^4}$. $(z-3)^4 f(z) = 1$ finite \Rightarrow pole of order 4 at z=3.
- 7. Essential Singularity: $f(z) = e^{1/z}$ at z = 0. As $z \to 0$, f(z) takes every complex value infinitely often (Casorati-Weierstrass theorem).
- 8. Another Essential Singularity: $f(z) = \sin(1/z)$ at z = 0. No finite limit; oscillates infinitely essential singularity.

Summary:

Removable \Rightarrow f(z) bounded near z_0 ,

Pole $\Rightarrow |f(z)| \to \infty$,

Essential \Rightarrow f(z) takes infinitely many values near z_0 .