Functional Analysis

Syllabus Focus: Banach spaces, Hölder's and Minkowski's inequalities, continuous linear transformations, Hahn–Banach theorem, natural embedding $X \hookrightarrow X^{**}$, Open Mapping and Closed Graph theorems, Hilbert spaces, orthonormal bases, adjoint operators, projections, matrices, determinants, spectrum, spectral theorem (finite-dimensional), Banach algebras: regular/singular elements, topological divisors of zero, spectrum, spectral radius, radical, and semi-simplicity.

♦ Concepts Overview

Concept	Description	Note	Example
Normed Linear Space	Vector space over \mathbb{R} or \mathbb{C} with norm $ x $ satisfying positivity, homogeneity, triangle inequality.	Induces metric $d(x, y) = x - y $.	\mathbb{R}^n , $C[0,1]$, ℓ^p
Banach Space	Complete normed linear space (every Cauchy sequence converges in X).	Completeness is key.	ℓ^p , $C[0,1]$ (sup-norm)
Bounded/Continuous Operator	Linear $T: X \to Y$ is continuous \Leftrightarrow bounded: $ Tx \le M x $.	Norm $ T = \sup_{ x =1} Tx $.	Integral operator on $C[0,1]$
Dual Space X^*	All bounded linear functionals on X with norm $ f = \sup_{ x < 1} f(x) $.	Banach if X normed.	$(\ell^p)^* = \ell^q, 1$
Natural Embedding	$J: X \to X^{**}, J(x)(f) = f(x) \text{ for } f \in X^*.$	Isometric and injective; equality $J(X) = X^{**}$ holds iff X is reflexive.	$J: \ell^p \to (\ell^p)^{**}$ with $1 (reflexive)$
Hilbert Space	a Hilbert space is a real or complex inner product space that is also a complete metric space with respect to the metric induced by the inner product.	Enables projections, orthogonality, and orthonormal expansions.	ℓ^2 , $L^2[a,b]$, \mathbb{R}^n with dot produc
Orthonormal Basis	$\{e_i\}$ with $\langle e_i, e_j \rangle = \delta_{ij}$; span is dense.	Provides Fourier representa- tion and Parseval's identity.	Standard basis in ℓ^2 ; trigonome ric system in $L^2[0, 2\pi]$; Legendr polynomials in $L^2[-1, 1]$.
Adjoint T^* (Hilbert)	Unique $T^*: H \to H$ with $\langle Tx, y \rangle = \langle x, T^*y \rangle$.	$ T = T^* .$	Matrix adjoint A^*
Projection	$P^2 = P$. Orthogonal if $P = P^*$.	Decomposes $H = \ker P \oplus \operatorname{Im} P$.	Coordinate projection in \mathbb{R}^n
Spectrum $sp(T)$	$\{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible in } \mathcal{B}(X)\}.$	Always a nonempty compact subset of \mathbb{C} for bounded T .	For matrices, $sp(A)$ equals its set of eigenvalues.
Banach Algebra	A Banach space equipped with a continuous associative multiplication satisfying $ xy \le x y $.	gebraic and analytic structures	C[0,1] with pointwise product.
Spectral Radius	$r(a) = \lim_{n \to \infty} a^n ^{1/n}.$	Gives the largest modulus of spectral values; always $r(a) \le a $.	For a matrix $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ r(A) = 3.
Radical	$\operatorname{rad}(A)$ is the intersection of all maximal ideals $2/4$	A is semi-simple if $rad(A) = \{0\}.$	C[0,1] is semi-simple

⊞ Key Formulas

■ Hölder's Inequality: For p, q conjugate (1/p + 1/q = 1),

$$\sum_{i=1}^{\infty} |x_i y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{1/q}.$$

■ Minkowski's Inequality: For $1 \le p \le \infty$,

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{1/p}.$$

■ Spectral Radius:

$$r(a) = \lim_{n \to \infty} ||a^n||^{1/n} = \inf_{n \ge 1} ||a^n||^{1/n}.$$

Important Theorems

Hahn-Banach Theorem.

Let X be a normed linear space over the real or complex field, M a subspace of X, and f a bounded linear functional on M. Then there exists a bounded linear functional F on X such that $F|_{M} = f$ and ||F|| = ||f||.

Uniform Boundedness Principle (Banach-Steinhaus Theorem).

Let $\{T_{\alpha}\}$ be a family of bounded linear operators from a Banach space X into a normed linear space Y. If for every $x \in X$, the set $\{\|T_{\alpha}x\|\}$ is bounded, then the set $\{\|T_{\alpha}\|\}$ is bounded.

Open Mapping Theorem.

If $T: X \to Y$ is a bounded linear transformation from a Banach space X onto a Banach space Y, then T maps open sets in X onto open sets in Y.

Closed Graph Theorem.

Let X and Y be Banach spaces and $T: X \to Y$ a linear transformation. If the graph of T is closed in $X \times Y$, then T is bounded (and hence continuous).

Riesz Representation Theorem (Hilbert Space Form).

If H is a Hilbert space and f is a bounded linear functional on H, then there exists a unique element $y \in H$ such that $f(x) = \langle x, y \rangle$ for every $x \in H$, and ||f|| = ||y||.

Spectral Theorem for Finite-Dimensional Spaces.

Every normal operator on a finite-dimensional complex Hilbert space has an orthonormal basis consisting of eigenvectors; equivalently, T is unitarily diagonalizable, $T = U\Lambda U^*$.

Spectral Radius Formula.

For any element a of a Banach algebra, the spectral radius is given by

$$r(a) = \lim_{n \to \infty} ||a^n||^{1/n}.$$

Gelfand-Mazur Theorem.

If every nonzero element of a complex Banach algebra A is invertible, then A is isometrically isomorphic to the field of complex numbers \mathbb{C} .

Adjoint Operator Theorem.

If $T: H \to H$ is a bounded linear operator on a Hilbert space, then there exists a unique bounded operator T^* such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$, and $||T|| = ||T^*||$.

Radical and Semi-Simplicity.

The radical of a Banach algebra A is the intersection of all maximal modular ideals of A. The algebra A is said to be semi-simple if its radical is $\{0\}$.