

Unit VI — Differential Geometry of Curves & Surfaces

Serret–Frenet system, evolutes, fundamental forms, curvature theorems, geodesics, and isometries.

⌚ Review: 15–20 min

1. Curves in Space

— Serret–Frenet

- For space curve $\mathbf{r}(s)$ with arc length s , unit tangent \mathbf{T} , normal \mathbf{N} , binormal \mathbf{B} , curvature κ , torsion τ :

$$\mathbf{T}' = \kappa \mathbf{N}, \quad \mathbf{N}' = -\kappa \mathbf{T} + \tau \mathbf{B},$$

$$\mathbf{B}' = -\tau \mathbf{N}.$$

◎ Evolute & Centers of Curvature

- Evolute (locus of centers of curvature):

$$\mathbf{e}(t) = \mathbf{r}(t) + \frac{1}{\kappa(t)} \mathbf{N}(t).$$

● Spherical Curvature & Indicatrix

- Spherical curvature:

$$\kappa_s = \sqrt{\kappa^2 + \tau^2}.$$

- Spherical indicatrix: locus of $\mathbf{T}(s)$ on the unit sphere.

● Intrinsic Equations & Helices

- Intrinsic data:

$$\kappa = \kappa(s), \quad \tau = \tau(s).$$

- Circular helix:

$$\mathbf{r}(t) = (a \cos t, a \sin t, bt), \quad \kappa = \frac{a}{a^2 + b^2},$$

▲ 2. Curves on a Surface

- Surface of revolution (rotate $z = f(x)$ about z -axis):

$$\mathbf{r}(u, v) = (u \cos v, u \sin v, f(u)).$$
- Helicoid (ruled surface):

$$\mathbf{r}(u, v) = (u \cos v, u \sin v, av).$$

■ 3. Fundamental Forms First Fundamental Form

$$I = E du^2 + 2F du dv + G dv^2,$$

$$E = \mathbf{r}_u \cdot \mathbf{r}_u, \quad F = \mathbf{r}_u \cdot \mathbf{r}_v, \quad G = \mathbf{r}_v \cdot \mathbf{r}_v.$$

Second Fundamental Form

$$II = L du^2 + 2M du dv + N dv^2,$$

$$L = \mathbf{r}_{uu} \cdot \mathbf{n}, \quad M = \mathbf{r}_{uv} \cdot \mathbf{n}, \quad N = \mathbf{r}_{vv} \cdot \mathbf{n}.$$

Gaussian Curvature

$$K = \frac{LN - M^2}{EG - F^2}.$$

● 4. Theorems

Meusnier's Theorem: Normal section curvature κ_n vs. normal curvature κ :

$$\kappa_n = \kappa \cos \theta$$

(θ : angle between normal plane and osculating plane).

Euler's Theorem: Normal curvature in direction making angle ϕ with principal directions:

$$\kappa_n = \kappa_1 \cos^2 \phi + \kappa_2 \sin^2 \phi.$$

5. Special Curves & Directions Lines of Curvature: directions of extremal normal curvature satisfy

$$(FM - GL) du^2 + (FN - EM) du dv + (GN - EL) dv^2 = 0.$$

Dupin's Indicatrix: local quadratic form

$$Lx^2 + 2Mxy + Ny^2 = \pm 1.$$

Asymptotic Lines: zero normal curvature

$$L du^2 + 2M du dv + N dv^2 = 0.$$

6. Developable Surfaces

- Edge of regression: curve where the tangent plane is stationary.
- For a developable surface: $K = 0$.
- Ruled surface: $\mathbf{r}(t, u) = \mathbf{c}(t) + u \mathbf{d}(t)$, where $\mathbf{d}'(t)$ is parallel to $\mathbf{d}(t)$.

7. Geodesics Geodesic Equations (local coords u_i):

$$\frac{d^2 u_i}{ds^2} + \Gamma_{jk}^i \frac{du_j}{ds} \frac{du_k}{ds} = 0,$$

where Γ_{jk}^i are Christoffel symbols.

Conjugate Points: Points p, q on a geodesic are conjugate if there exists a non-zero Jacobi field vanishing at p and q .

8. Isometry

- A map $\phi : S_1 \rightarrow S_2$ is an isometry if it preserves the first fundamental form: $I_1 = I_2$.

Exam Tip: Master the linkage $EG - F^2 > 0$, principal curvatures via II/I , and geodesic equations via the variational principle. For quick checks: helices have constant κ, τ ; developables have $K = 0$; asymptotic directions exist iff $K \leq 0$.

Note: Please go through the above formulae. All other model problems have been explained in detail in the class videos and provided class materials.