

UNIT 10

STATISTICS AND PROBABILITY

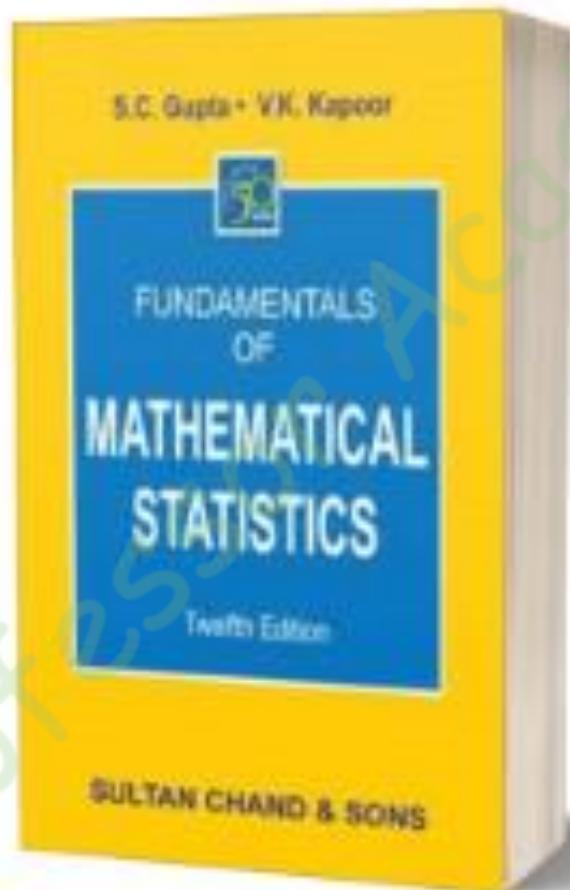
SYLLABUS

UNIT—X STATISTICS/PROBABILITY

[Measures of central tendency – Measures of Dispersion – Moments – Skewness and Kurtosis – Correlation – Rank Correlation – Regression – Regression line of x on y and y on x – Index Numbers – Consumer Price Index numbers – Conversion of chain base Index Number into fixed base index numbers – Curve Fitting – Principle of Least Squares – Fitting a straight line – Fitting a second degree parabola – Fitting of power curves – Theory of Attributes – Attributes – Consistency of Data – Independence and Associate of data.]

Theory of Probability – Sample Space – Axioms of Probability – Probability function – Laws of Addition – Conditional Probability – Law of multiplication – Independent – Boole's Inequality – Bayes' Theorem – Random Variables – Distribution function – Discrete and continuous random variables – Probability density functions – Mathematical Expectation – Moment Generating Functions – Cumulates – Characteristic functions – Theoretical distributions – Binomial, Poisson, Normal distributions – Properties and conditions of a normal curve – Test of significance of sample and large samples – Z-test – Student's t-test – F-test – Chi square and contingency coefficient.

REFERENCE BOOK



STATISTICS

✓ Measures of central tendency
Measures of Dispersion
Moments
Skewness and Kurtosis

} Correlation
Rank Correlation
Regression
Regression line of x on y and y on x

Index Numbers
Consumer Price Index numbers
Conversion of chain base Index Number
into fixed base index numbers

✓ Theory of Attributes
Attributes
Consistency of Data
Independence and Associate of data

Curve Fitting
Principle of Least Squares
Fitting a straight line
Fitting a second-degree parabola
Fitting of power curves

PROBABILITY

Theory of Probability
Sample Space
Axioms of Probability
Probability function
Laws of Addition
Conditional Probability
Law of multiplication
Independent
Boole's Inequality
Bayes' Theorem

Theoretical distributions
Binomial, Poisson, Normal distributions
Properties and conditions of a normal curve

Test of significance of sample and large samples
Z-test
Student's t-test
F-test
Chi square and contingency coefficient

Random Variables
Distribution function
Discrete and continuous random variables
Probability density functions
Mathematical Expectation
Moment Generating Functions
Cumulates
Characteristic functions

Basics

Measures of central tendency

Measures of Dispersion

Moments

Skewness and Kurtosis

MEASURES OF CENTRAL TENDANCY OR AVERAGES

They show a tendency to concentrate at ascertain values, usually somewhere in the center of the distribution

MEASURE OF VARIATION OR DISPERSION

They show how much the data vary about a measure of central tendency.

MEASURE OF SKEWNESS

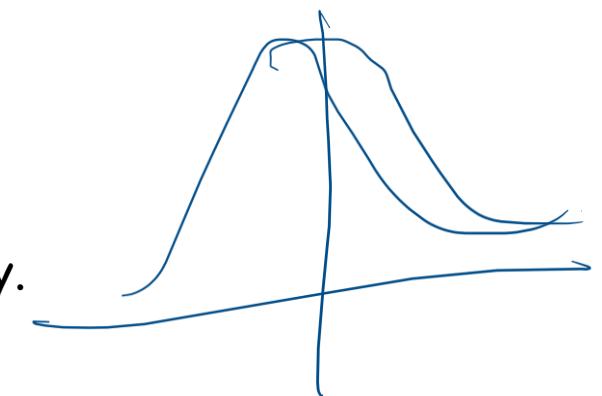
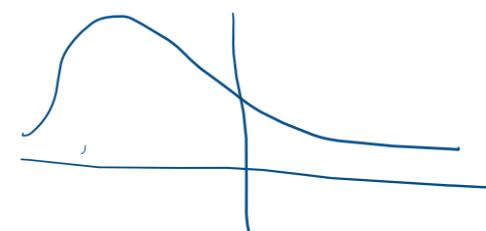
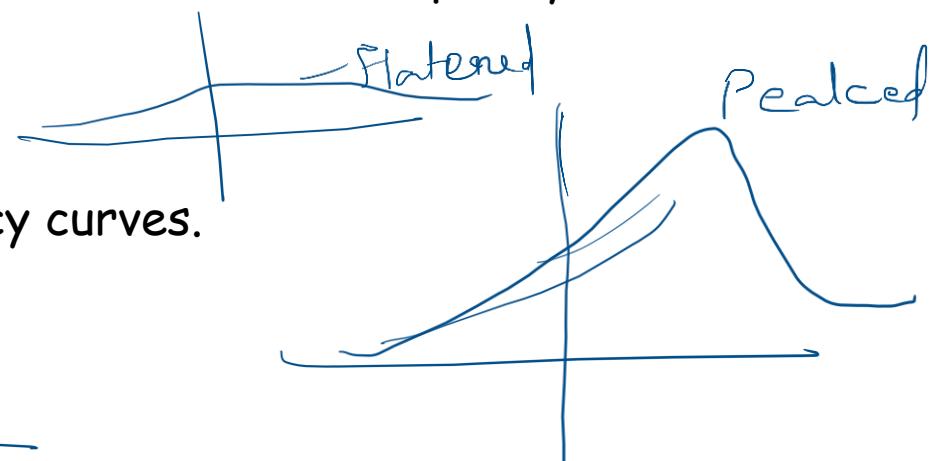
This measures the direction and degree of asymmetry of a data in the frequency distribution.

MEASURE OF KURTOSIS

The measure of flatness or peakedness of the frequency curves.

deviate

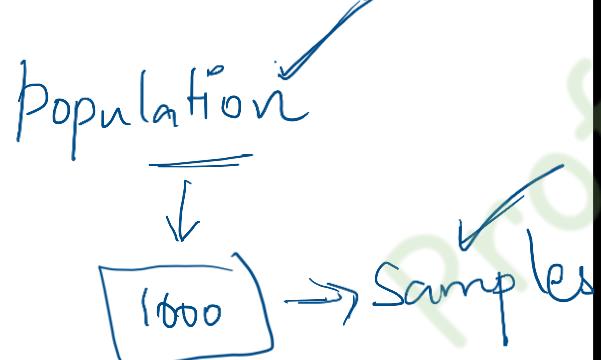
Symmetric



5

MEASURES OF CENTRAL TENDENCY

1. Arithmetic Mean or Mean
2. Median
3. Mode - ill defined
4. Geometric Mean
5. Harmonic Mean ✓



Non-zero
Data

1, 2, 2, 5, 5 → Mode ?

IDEAL MEASURES OF CENTRAL TENDENCY

- Prof. Yule

1. Well defined ✓
2. Easy to calculate ✓
3. Should be based on all the observations ✓
4. Should be suitable for further mathematical treatment
5. Should be affected as little as possible by fluctuations of sampling
6. Should not be affected much by extreme values

2 - 2 times
5 - 2 times

mode = 2, 5
Bimodal

change

least - greatest

ARITHMETIC MEAN OR AVERAGES

Sum of observations divided by the number of observations.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

MEDIAN

The value of the variable which divides it into two equal parts.

MODE

Most repeated value in the data.

Q. 4, 5. 10, 12, 15, 10 → mode 5
 500 → Height.

$$\text{Mean} = 4 + \frac{5+10+12+10}{5} =$$

Q. 6 Frequency - Repeat.

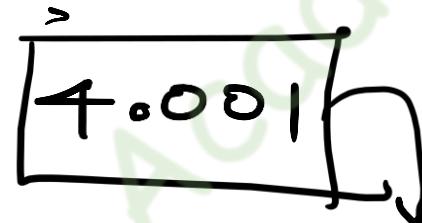
height
 x (ft): 4

4.5 5
 f : 20 10 25

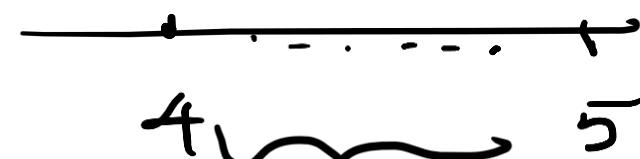
frequency.

Q. 7
 x : 0-1 1-2 2-3 4-5

f : 10 15 20 10



continuous data → { 4.6 4.9
 4.62 }



→ Grouped data

ARITHMETIC MEAN OR AVERAGES

Sum of observations divided by the number of observations.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \rightarrow \text{discrete [finite, only data]}$$

In case of frequency distribution

✓ $\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1}{N} \sum f_i x_i \rightarrow \text{finite, frequency}$

Total frequency $= \sum f_i = N$

No. of observation

When considering deviation 'd' $\underline{x} = x - A$

✓ $\bar{x} = A + \frac{1}{N} \sum f_i d_i$

$$d = \frac{x - A}{h}$$

$$\bar{x} = A + \frac{h}{N} \sum f_i d_i$$

$x:$	1^{x_1}	2^{x_2}	3^{x_3}	4^{x_4}	5^{x_5}	6^{x_6}	7^{x_7}
$f:$	5	9	12	17	14	10	6

$$\text{Mean} = \frac{\sum x_i f_i}{\sum f_i}$$

$$\text{mean of } T_N = \frac{5 + 18 + 36 + 68 + 70 + 60 + 42}{73}$$

$$= \frac{299}{73} = 4.09$$

$$\sum_{i=1}^7 (x_i - \bar{x}) = 0 ?$$

Class

f

Midpoint of class
 $x = A + \frac{h}{2}$

0-8	8	4	-24	-3	-24
8-16	7	12	-16	-2	-14
16-24	16	20	-8	-1	-16
24-32	24	28	0	0	0
32-40	15	36	8	1	5
40-48	7	44	16	2	14
	$\sum f = 72$				
	$A = 28$	$h = 8$	mean		$\sum f_i d_i = -25$

$$\bar{x} = A + \frac{\sum f_i d_i}{N} \times h$$

$$= 28 + \frac{(-25)}{77} \times 8$$

$$= 28 - \frac{200}{77} = \frac{2556 - 200}{77} = \frac{1956}{77} = 25.404$$

PROPERTIES OF ARITHMETIC MEAN OR AVERAGES

DIY

1. Algebraic sum of the deviations of a set of values
from their arithmetic mean is zero.

minimum when taken about mean.

3. Mean of composite series.

$$\bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2 + \cdots + n_k \bar{x}_k}{n_1 + n_2 + \cdots + n_k}$$

4. Weighted Average mean.

$$\bar{x} = \frac{\sum \omega_i x_i}{\sum \omega_i}$$

$f_i \rightarrow w_i$

$$\sum (x_i - \bar{x})^2$$

P.T $y = \sum (x_i - A)^2$ is minimum
when $A = \bar{x}$.

discrete

$$\sum (x_i - A) = 0$$

$$\sum (x_i - A) = 0$$

$$\sum_{i=1}^n x_i - \sum_{i=1}^n A = 0 \Rightarrow$$

$$\sum x_i = nA$$

$$\frac{\sum x_i}{n} = A \Rightarrow \bar{x} = \bar{x}$$

MEAN

Sum of observations divided by the number of observations.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

In case of frequency distribution

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1}{N} \sum f_i x_i$$

When considering deviation 'd'

$$\bar{x} = A + \frac{1}{N} \sum f_i d_i$$

$$d = \frac{n-A}{h}$$

$$\bar{x} = A + \frac{h \sum f_i d_i}{N}$$

1.Data Set: 74,000, 82,000, 75,000, 96,000, 88,000
1.Data Set: 74,000, 82,000, 75,000, 96,000, 88,000
1.Data Set: 74,000, 82,000, 75,000, 96,000, 88,000

MEDIAN

The median is the middle value in a data set that has been ordered from least to greatest.

Example: In the set $\{5, 2, 7, 12, 9\}$, the median is 7

In the ordered set $\{2, 5, 4, 7\}$, the median is 4.5 (the average of 4 and 5)

2, 5 \textcircled{T} , 9, 12

2, $\boxed{4, 5}$, 7

$$\frac{4+5}{2} = \frac{9}{2} = 4.5$$

✓ Find the median of the data: 74,000, 82,000, 75,000, 96,000, 88,000

MEDIAN FOR CONTINUOUS FREQUENCY DISTRIBUTION

The class corresponding to the c.f. just greater than $N/2$ is called median class and the value of median is obtained by the following formula: $\text{Median} = l + \frac{i}{f} \left(\frac{N}{2} - c \right)$

Class Interval (X)	Frequency (f)
0-5	5
5-10	3
10-15	4
(l ₁) 15-20	8 (f)
20-25	7
25-30	3
$N = \sum f = 30$	

Median class ←

$$l - \text{lower limit} = 15$$
$$f -$$

$$\frac{30}{2} = 15 \oplus$$

Class Interval (X)	Frequency (f)	Cumulative Frequency (c.f.)
0-5	5	5
5-10	3	$5 + 3 = 8$
10-15	4	$8 + 4 = 12$ (c.f.)
(l ₁) 15-20	8 (f)	$12 + 8 = 20$ Median Class
20-25	7	$20 + 7 = 27$
25-30	3	$27 + 3 = 30$
	$N = \sum f = 30$	

Now apply the following formula

$$\text{Median} = l + \frac{\frac{N}{2} - c.f.}{f} \times i = 15 + \frac{\frac{30}{2} - 12}{8} \times 5 = 16.875$$

Median(M)=Size of $[N/2]$ th item

$= \text{Size of } [N/2] \text{ th item} = \text{Size of } 15^{\text{th}}$ item

Hence, the median lies in the class 15-20.

$\checkmark l = 15, f = 8, i = 5, c.f. = 12$

\hookrightarrow Step size

cumulative (preceding)

MODE - Most repeated value

The mode is the value that appears most frequently in a data set.

Example

Consider the following data set of hockey scores: {7, 5, 0, 7, 8, 5, 5, 4, 1, 5}.

Count the frequency of each number:

7 appears 2 times.

5 appears 4 times.

0 appears 1 time.

8 appears 1 time.

4 appears 1 time.

1 appears 1 time.

The mode of this data set is 5.

MODE FOR CONTINUOUS FREQUENCY DISTRIBUTION

The mode for a continuous frequency distribution is calculated using the following formula.

$$\checkmark \text{Mode} = l + \frac{h(f_1 - f_0)}{2f_1 - f_0 - f_2}$$

Mod *Pre* *Succ*

l = 40 ; *h* = 10

$$f_1 = 28, \quad f_0 = 12, \quad f_2 = 20$$

modal
class

Class interval	Frequency
0 – 10	5
10 – 20	8
20 – 30	7
30 – 40	12 (f_0)
40 – 50	28 (f_1)
50 – 60	20(f_2)
60 – 70	10
70 – 80	10

GEOMETRIC MEAN

$$G = \sqrt[n]{x_1 x_2 \dots x_n}$$

$\frac{x_1 x_2 \dots x_n}{n}$

$\text{Condition: } x_i \neq 0$

Geometric mean of a set of n observations is the n th root of their product.

$$G = \text{Antilog} \left[\frac{1}{n} \sum_i \log x_i \right] \quad \Leftrightarrow G = \underbrace{(x_1 \cdot x_2 \dots x_n)}_{n}^{1/n}$$

$G = (2 \times 5 \times 10 \times 20 \times 1) = 0$

$$\text{Geometric mean of the combined group: } G = \text{Antilog} \left(\frac{n_1 \log G_1 + n_2 \log G_2 + \dots + n_k \log G_k}{n_1 + n_2 + \dots + n_k} \right)$$

HARMONIC MEAN

NON-ZERO VALUES

It is the reciprocal of the arithmetic mean of the reciprocals of the given data.

$$\{2, 4, 6, 8\} \rightarrow H.M$$

$$\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8} \} \rightarrow \text{AM}$$

$$H = \frac{1}{\frac{1}{N} \sum_{i=1}^n \frac{1}{x_i}}$$

$$= \frac{1}{\frac{1}{4} \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} \right]} = \frac{1}{\frac{1}{4} \left[\frac{12 + 6 + 4 + 3}{24} \right]} = \frac{25}{106}$$

$$= \frac{106}{25}$$

1 Data
2 Reciprocal

3 AM
4 Reciprocal

5 Data
6 Reciprocal

7 Data
8 Reciprocal

PARTITION VALUES

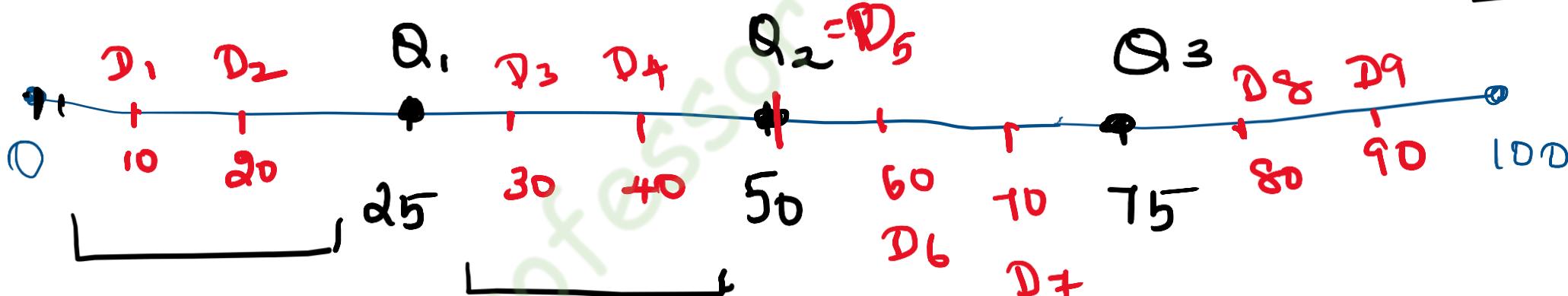
Q_1, Q_2, Q_3

The three points which divide the series into four equal parts are called quartiles. 'Q'

D_1 to D_9

The nine points which divide the series into ten equal parts are called deciles. 'D'

The ninety-nine points which divide the series into hundred equal parts are called percentiles.



$$Q_1 = \frac{N}{4}$$

$$Q_2 = \frac{N}{2}$$

$$Q_3 = \frac{3N}{4}$$