Introduction
The TN TRB Assistant Professor Chemistry Syllabus offers a comprehensive outline for candidates preparing for the Tamil Nadu Teachers Recruitment Board (TRB) examination in Chemistry. It includes essential areas such as inorganic, organic, and physical chemistry, along with spectroscopy, analytical techniques, and environmental chemistry. The syllabus also covers modern developments in chemical sciences, research methodologies, and applied chemistry topics. This structured framework helps aspirants strengthen their conceptual understanding and experimental knowledge, ensuring a well-rounded preparation for academic roles in chemistry.
TN TRB Assistant Professor Syllabus – Chemistry
UNIT 1 Inorganic Chemistry
• Chemical periodicity
• Structure and bonding in homo–and heteronuclear molecules, including shapes of molecules (VSEPR Theory).
• Concepts of acids and bases, Hard-Soft acid base concept, Buffer Solutions Non-aqueous solvents.
• Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds
• Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms.
• Inner transition elements: spectral and magnetic properties, redox chemistry, analytical applications.
• Organometallic compounds: synthesis, bonding and structure, and reactivity.
• Organometallics in homogeneous catalysis Cages and metal clusters.
UNIT 2
•Analytical chemistry–separation, spectroscopic, electro-and thermo analytical methods.
• Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron–transfer reactions; nitrogen fixation, metal complexes in medicine.
• Characterization of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV-vis, NQR, MS, electron spectroscopy and microscopic techniques.
• Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.
UNIT 3 Physical Chemistry:
• Basic principles of quantum mechanics: Postulates; operator algebra; exactly- solvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; tunneling.
• Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications.
• Atomic structure and spectroscopy; term symbols; many-electron systems and anti-symmetry principle.
• Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated π-electron systems.
• Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules.
UNIT 4
• Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities–selection rules; basic principles of magnetic resonance.
• Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell’s relations; spontaneity and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions.
• Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities-calculations for model systems.
UNIT 5 Physical Chemistry Continuation
• Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye Huckel theory; electrolytic conductance – Kohlrausch’s law and its applications; ionic equilibria; conductometric and potentiometric titrations.
• Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions.
• Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis.
UNIT 6
• Solid state: Crystal structures; Bragg’s law and applications; band structure of solids.
• Polymer chemistry: Molar masses; kinetics of polymerization.
• Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient.
UNIT 7 Organic Chemistry
• IUPAC nomenclature of organic molecules including regio-and stereo isomers.
• Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereo selectivity, enantioselectivity, diastereoselectivity and asymmetric induction.
• Aromaticity: Benzenoid and non-benzenoid compounds–generation and reactions.
• Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and nitrenes.
• Organic reaction mechanisms involving addition, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Determination of reaction pathways.
• Common named reactions and rearrangements–applications in organic synthesis.
• Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, region and stereoselective transformations.
• Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups.
UNIT 8
• Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction – substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination.
Resolution – optical and kinetic.
• Pericyclic reactions– electro cyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry.
• Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O, N, S).
• Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and alkaloids.
• Structure determination of organic compounds by IR, UV-Vis, 1H&13 C-NMR and Mass spectroscopic techniques.
• Chemistry uses in medicine or medical technology
• Chemical applications to human health.
• Applications of surface tension
• Composition of food dye.
UNIT 9 Interdisciplinary topics
• Chemistry in nanoscience and technology.
• Catalysis and green chemistry.
UNIT 10
• Medicinal chemistry.
• Supramolecular chemistry.
• Environmental chemistry.
Download TN TRB Assistant Professor Syllabus – Chemistry: https://professoracademy.com/wp-content/uploads/2025/10/CHEMISTRY-SYLLABUS.pdf
Join our College TRB Chemistry Course: https://professoracademy.com/courses/tn-trb-assistant-professor-chemistry/
Join our College TRB Tamil Eligibility & Descriptive Paper Coaching: https://professoracademy.com/courses/tn-trb-assistant-professor-tamil-eligibility-paper-2-only/
Join Our College TRB Coaching: https://professoracademy.com/product-category/college-trb
Conclusion
The Chemistry syllabus for the TN TRB Assistant Professor exam serves as a detailed roadmap for those aspiring to build a teaching career in the field of chemical sciences. By focusing on theoretical foundations and practical applications, the syllabus enables candidates to develop a deep understanding of chemical principles and research skills. Preparing as per this syllabus not only enhances exam readiness but also supports long-term growth in the field of chemistry education and research.
For more information:
Contact Us : +91 7070701005 / +91 7070701009 / +91 8124408794 / +91 7550100920